Refine Your Search

Topic

Author

Search Results

Technical Paper

A Study of the Control Logic of Electronically Controlled Suspension for Motorcycle

2020-01-24
2019-32-0569
Electronically controlled suspensions are expected to improve driving performance as the damping characteristics of the suspension can be adjusted in real time to respond to road conditions. This paper reports the results of testing the suspension control logic for improving ride quality, especially when driving on rough roads, using an internally developed riding simulator. The skyhook theory is widely known as a control logic for reducing vibration when driving a four-wheeled vehicle on a rough road, which we utilized in our riding simulator to examine the vibration reduction effects when applying control logic for motorcycle suspensions. The test results show that the skyhook theory can be applied in motorcycles. However, sensors for suspension systems that can be installed in mass-produced motorcycles are severely limited in terms of cost and space.
Technical Paper

Abnormal Combustion of Two Stroke Cycle Gasoline Snowmobile Engine at High Speed and Full Load

1979-02-01
790841
Abnormal combustion, which is a cause for engine failure, is explicated to be high speed knocking by multi-cycle analysis of the cylinder pressure data of snowmobile two stroke cycle engines operated at high speed and wide open throttle condition. A mini-computer was used for the analysis of the cylinder pressure data. Calculation of the entire cycle was conducted until an engine actually failed and the relationship between the engine failure and the conditions surrounding the knocking was made clear. Using the rate of pressure change as a quantitative evaluation method for high speed knocking, a combustion chamber shape with less knocking occurrence possibility was selected.
Journal Article

Acceleration Performance Analysis for Rubber V-Belt CVT with Belt Tension Clutching

2015-11-17
2015-32-0731
The power train system for Utility Vehicles (UVs) or All-Terrain Vehicles (ATVs) mainly consists of a rubber V-belt CVT. The adjustment of the CVT specification requires many steps to realize the shifting operations of the CVT so as to satisfy the acceleration feeling of the driver. In this paper, we report on the simulation technology that predicts the transient behavior during an acceleration of the vehicle equipped with a belt tension clutching CVT, which has both functions of the shift operation and the clutch action. By using the developed simulation technique, it has become possible to adjust the CVT specifications efficiently.
Technical Paper

Advanced Environmental Control System (The 2nd Part)

2007-09-17
2007-01-3923
The Advanced ECS is under development for the purpose of saving fuel, improving safety, and cabin comfort. In FY2006 study, basic components (i.e. MDC, OBNOGS, desiccant units, and CO2 removers) have been improved and their performances evaluated including resistance to environmental condition (i.e. vibration). In addition, the suitable system configuration for a 90-seats aircraft has been considered to evaluate the feasibility of the system. In this paper, we show the results of the evaluated performances based on prototype components, and the analytical study of a revised system configuration.
Technical Paper

Aerodynamic Development of Boundary Layer Control System for NAL QSTOL Research Aircraft ‘ASKA’

1991-09-01
912010
“ASKA” developed by National Aerospace Laboratory (NAL) is a quiet, short take-off and landing (QSTOL) research aircraft adopting upper surface blowing (USB) concept as a powered high lift system. To achieving sufficient STOL performance by augmenting stall angle of attack and roll control power, blowing BLC technique was applied to the outboard leading edges and ailerons.Supplied high pressure air to save the BLC piping space,the BLC system which was fit for use of high pressure air was developed. The BLC system, in which BLC air is discharged by a series of discrete jets from small drilled holes (0.8 ∼ 3.0 mm in diameter) arranged in a raw, is one of the unique features of the aircraft. In this paper, the summaries of aerodynamic development of the BLC system are described except for the air piping system.
Technical Paper

Application of Air Fuel Ratio Control to a Motorcycle with Dual Oxygen Sensor

2011-11-08
2011-32-0629
At the upstream part of the Three-Way Catalyst (TWC) an O₂ sensor (UpO₂S) is used for O₂ Feedback Control (O₂F/B) that controls the air-fuel ratio (A/F) close to the stoichiometric level. O₂ sensor has a bit of individual characteristic difference as for the switching the excess air ratios of output (λ shift). This phenomenon becomes remarkable according to the effects of unburnt elements in exhaust gas. Despite the O₂F/B implementation, A/F isn't controlled to the stoichiometric level and the conversion efficiency of the TWC could be lower. Maintaining a higher level of TWC conversion efficiency requires more accurate A/F control and corrections of the UpO₂S λ shift issue. Therefore, using an O₂ sensor at the downstream part of the TWC (DownO₂S)~where the effects of unburnt elements in exhaust gas are smaller~can be an effective way to restore these challenges.
Technical Paper

Development of Direct Injection Technology for Motorcycle Gasoline Engine

2023-10-24
2023-01-1850
The authors developed a gasoline engine that combined direct injection and port fuel injection in order to improve fuel economy for motorcycles. Compared to passenger car engines, motorcycle engines generally have smaller displacement and operate at higher engine speed, so the bore and stroke are generally smaller than those of passenger cars. Therefore, the direct injection spray characteristics optimized for small bore and stroke were selected to reduce fuel adhesion to various parts of the combustion chamber wall. In addition, this engine employed the high tumble intake port that can both strengthen turbulence intensity and suppress the decrease in volumetric efficiency to a lower level. Also, stratification of air-fuel mixture and split injection were employed for reducing catalyst warm-up time and soot. The results showed that excellent fuel economy was achieved without sacrificing engine output performance while meeting emissions regulations.
Technical Paper

Development of New Hydraulic Fluids Specifications for Construction Machinery

2005-11-01
2005-01-3574
Hydraulic fluid (HF) specifications for mobile construction equipment called JCMAS HK and HKB have been established by the Fuels and Lubricants Committee of Japan Construction Mechanization Association (JCMA). The specifications are designated by two viscosity categories of single grade and multigrade. Each category has ISO viscosity grade (VG) 32 and 46. The JCMAS HK oils are recommended for use in hydraulic systems designed at pressure up to 34.3MPa(5000psi) and to heat hydraulic fluid up to 100 °C. These oils also provide wear control, friction performance, oxidation and rust protection, seal swell control and filterability performance. Two piston pump test procedures were developed to evaluate lubricating performance of these oils under high pressure conditions. The JACMAS HKB oils are classified as environmentally friendly oils due to the additional requirement for biodegradability.
Technical Paper

Development of Spraying Technology for Improving the Wear Resistance of Engine Cylinder Bores

2003-09-15
2003-32-0066
In response to design requirements for lower weight and higher output, the motorcycle engine cylinder block has evolved from a cast cylinder block to an aluminum alloy cylinder block whose bore walls are surface-treated for wear-resistance. Hard-chromium plating, nickel-compound plating, and the like are in wide use as the wear-resistance surface treatment method, but spray technology has recently been attracting attention because of less impact on the environment, superior initial running-in performance and good oil retention. We have been applying a unique spraying method called wire explosion spraying to those models with a special need for wear-resistance surface. In this report we describe our wire explosion spray technology. With the aim of improving the bond strength of the sprayed coat, we studied the effects of the collided particles' form on bond strength in the wire explosion spraying conditions.
Technical Paper

Development of Supercharged Two-Stroke Engine with Intake and Exhaust Valve for Hybrid System

2023-10-24
2023-01-1823
The two-stroke engine has a small displacement and high output, and therefore saves space when the engine is installed in a vehicle. Thus, the application of two-stroke engines to HEVs is a very effective means of reducing vehicle weight and securing engine space. On the other hand, the unfired element increases in the exhaust gas with a two-stroke engine because the air-fuel mixture is blown through to the exhaust system during the scavenging process inside the cylinder. Moreover, combustion becomes unstable due to the large amount of residual burnt gas in the cylinder. To solve these problems, we propose a two-stroke engine that has intake and exhaust valves that injects fuel directly into the cylinder. We describe the engine shape and the method that can provide high scavenging efficiency and stable combustion in such a two-stroke engine.
Journal Article

Development of a Control Method to Reduce Acceleration Shock in Motorcycles

2010-09-28
2010-32-0106
The purpose of this paper is to propose a control method to reduce acceleration shock in motorcycles. Reducing the acceleration shock is very important in improving driveability of motorcycles. Motorcycles equipped with manual transmission have some backlashes in the transmission, with large backlash especially in dog clutch portions. We have figured out that one of the main causes of the acceleration shock is the collision of the dogs at high relative angular velocity during acceleration. Also, our data analysis has revealed that there is a correlation between a peak value of the longitudinal body acceleration and the relative angular velocity at the moment of the dog collision. A simulation was undertaken to verify this phenomenon, and its results have made it clear that we need to decrease the relative angular velocity at the moment of the dog collision so as to reduce the acceleration shock.
Technical Paper

Development of a Supercharged Engine for Motorcycle with a Centrifugal Supercharger

2015-11-17
2015-32-0729
1 In the development of motorcycle engines, a strong feeling of power, an element of being fun to ride has continued strong demand. However, demand to meet environmental performance, a conflicting element, has increased dramatically in recent years and a breakthrough technology that achieves both environmental performance and a feeling of power is in demand. Here, the newly developed engine has greatly enhanced feeling of power while clearing stringent environmental restrictions through use of a centrifugal type supercharger. However, there were several problems that had to be resolved with regards to application of a supercharger to a motorcycle engine. In applying a supercharger to a motorcycle, a major problem is the best way to keep the engine size from increasing in size. The engine, which is the heaviest parts on a motorcycle greatly affects motorcycle maneuverability so it must be compact and the mass concentrated.
Technical Paper

Effects of Engine Cooling System on Engine Performance: Balancing Engine Power and Fuel Consumption

2022-01-09
2022-32-0017
During high engine load, adequate engine cooling is necessary to prevent irregularly highly machine temperatures and spark knock that are issues affecting high power from being achieved. However, excessive cooling during low engine load or cooling locations that do not require cooling relatively exacerbates fuel consumption. Therefore, optimization of the engine cooling system is needed to achieve higher performance of motorcycle engines. First of all, in water-cooled engines, conventional water cooling system adjusts the cooling amount via flow channel switching with a thermostat, which is opened in high water temperature. However, with the bypass channel, water may bypass the radiator but still continues to circulate, thereby leading to loss arising from heat transfer from the cylinders.
Technical Paper

Emission Reduction for Small Utility Two-Stroke Engine

1995-09-01
951767
As a result of our researches into reduction of exhaust emissions for small utility two-stroke engines which are widely used for handheld equipment such as a brush cutter and a hedge trimmer, we here discuss how much exhaust emissions can be reduced with only minor modifications of an engine. For the purpose of reducing emissions, we evaluated the effects of exhaust timing retard and of enleanment of carburetor mixture on mass emissions using the existing 25cc two-stroke engine, which emits high levels of HC and CO, and substantially low levels of NOx. We attained great reduction of HC and CO. The power output, however, dropped and both the plug seat and the exhaust gas temperatures rose, which would detract the practicability of the engine. But we solved the problems by modifying the combustion chamber and the exhaust port shape, keeping the emissions reduced as mentioned above.
Technical Paper

Experiment of Two-Phase Flow Loop Thermal Control System Using Test Rocket

1994-06-01
941405
This paper describes results of the thermal-hydraulic performance experiment system (THYPES) of the two-phase flow loop thermal control system using the test rocket which can maintain a gravity level of 10-4G for about six minutes. Feasibility study of this system had been conducted for loading into a experiment module of test rocket TR-IA No. 3. In 1991, engineering model of the experiment system was designed and manufactured in order to investigate its function, performance, and endurance against launching conditions. In 1992, flight model of the experiment system was designed and manufactured. The following tests were conducted so as to ensure the capability and compatibility of THYPES; functional test, performance test, environmental test, and interface tests between the experiment system and rocket avionics section. The experiment was performed on September 17, 1993 and the results are evolved.
Technical Paper

Improvement of transitional characteristic by measuring pressure in the combustion chamber

2005-10-12
2005-32-0050
Motorcycle engines are required to have high output levels but low exhaust gas emission levels. Measuring the combustion condition proves useful for understanding the engine's operating condition. We developed a compact, high-performance combustion analyzer for measuring the combustion condition of motorcycle engines. This newly developed combustion analyzer is capable of analyzing the indicated mean effective pressure at each engine cycle at the engine speeds exceeding 10,000 rpm required of a high-performance motorcycle engine. Its compact size makes it easily applicable for onboard use, allowing measurement in any operating condition, including circuit travel, which has never been possible with conventional combustion analyzers. We used this new combustion analyzer to measure combustion condition not only on a chassis dynamo but also during circuit travel, when the motorcycle and engine are subjected to much harsher operating conditions.
Technical Paper

Inlet Unstart Influence on Aerodynamic Characteristics of Next Generation Supersonic Transport (SST)

1998-09-28
985546
The impact of inlet unstart phenomena on supersonic transport (SST) was investigated by wind tunnel testing. Inlet unstart condition was simulated by controlling the captured mass flow by the inlet. Unsteady pressures on the lower surface of wing and unsteady forces of the wind tunnel model were measured. Unsteady pressure measurement was carried out to detect shock wave motion. Unsteady force measurement by using both internal balance and accelerometers was to estimate axial/angular acceleration of airframe when inlet unstart was occurred. The pressure measurement data revealed that shock location fluctuated with dominant frequency although the controlled mass flow was steady. And it was analytically shown that the dominant frequency is corresponding to the first order frequency of organ pipe resonance.
Technical Paper

Knock and Misfire Detection using Ion Current Measurement for Ultra Lean Burn Medium Speed Gas Engine

2007-07-23
2007-01-2078
The aim of this study was to clarify the feasibility of applying ion current measurement to detect knock and misfire in lean-burn gas engines. The practical applicability was evaluated by conducting a basic test on a small engine and a test on a large engine. The tests were conducted by advancing the ignition timing to cause knocking, and an evaluation was carried out by comparing the knocking intensity detected by ion current signals and by cylinder pressure signals. By increasing the application voltage and including an amplifier circuit, the weak ion current signals were detected, which indicates that it should be possible to use ion current measurement to detect knock and misfire in lean-burn gas engines.
Technical Paper

Limit Cycle in the Longitudinal Motion of the USB STOL ASKA - Control System Functional Mockup and Actual Aircraft

1992-04-01
921040
The Japanese Quiet Short Take Off and Landing experimental aircraft named ASKA was developed and flight tested during 1977 till 1989. The control system hard and software were examined by the functional mock-up with using the actual hardware. The small longitudinal limit cycle was observed in the closed loop test when the Pitch Control Wheel Steering software was on in the mock-up testing. In this paper, first, the method to analyze and to expect the limit cycle based on the describing function was shown. The limit cycle was induced due to the nonlinearities in the automatic control mechanism. The nonlinearities in the hardware were examined to make the model to simulate the system on the computer. The method was shown effective to predict the limit cycle in the mock-up. Second, with using the flight measured dynamics, the limit cycle was concluded as on border line between existing and not, which coincides with the actual flight result.
Technical Paper

Optimal Motorcycle Configuration with Performance Limitations

2007-10-30
2007-32-0123
Motorcycle configurations, such as CG (center of gravity) location, have come to be fixed to the current ones by trial and error since motorcycle was born. Generally motorcycles' ratio of CG height to wheelbase is relatively higher than four-wheel cars'. We have analyzed the optimal motorcycle CG location with relatively simple formulas, which we have derived to calculate the maximum acceleration with three performance limitations and calculate the maximum speed and the shortest time to run through a course. The results show that the calculated speed is significantly close to actual sport motorcycle's and that the optimal CG locations for various courses are bounded in a certain limited area which is near actual sport motorcycle's.
X