Refine Your Search

Topic

Author

Search Results

Technical Paper

A Mathematical Model on Physiological Processes of Candidate Crops in CEEF

1996-07-01
961499
A mathematical model was developed in order to predict quantities of CO2 and O2 gas exchange, transpiration, biomass production, food production and nutrient absorption by candidate crops in Closed Ecology Experiment Facilities (CEEF) in which material recycling in a controlled ecological life support system (CELSS) is to be made. This model includes effects of physical parameters such as light intensity, air temperature, humidity and atmospheric CO2 concentration on these processes and plant aging effect on these processes. Using results from experiments in which candidate crops were grown under controlled environment and data from literature, mathematical models for each crop was given physiological parameters. Then, changes in biomass and food accumulation, gas exchange and transpiration of each crop with time were calculated.
Journal Article

Acceleration Performance Analysis for Rubber V-Belt CVT with Belt Tension Clutching

2015-11-17
2015-32-0731
The power train system for Utility Vehicles (UVs) or All-Terrain Vehicles (ATVs) mainly consists of a rubber V-belt CVT. The adjustment of the CVT specification requires many steps to realize the shifting operations of the CVT so as to satisfy the acceleration feeling of the driver. In this paper, we report on the simulation technology that predicts the transient behavior during an acceleration of the vehicle equipped with a belt tension clutching CVT, which has both functions of the shift operation and the clutch action. By using the developed simulation technique, it has become possible to adjust the CVT specifications efficiently.
Technical Paper

Advanced Environmental Control System (The 2nd Part)

2007-09-17
2007-01-3923
The Advanced ECS is under development for the purpose of saving fuel, improving safety, and cabin comfort. In FY2006 study, basic components (i.e. MDC, OBNOGS, desiccant units, and CO2 removers) have been improved and their performances evaluated including resistance to environmental condition (i.e. vibration). In addition, the suitable system configuration for a 90-seats aircraft has been considered to evaluate the feasibility of the system. In this paper, we show the results of the evaluated performances based on prototype components, and the analytical study of a revised system configuration.
Technical Paper

Air Circulation Confinement Experiments in the CEEF - Changes in Physical Conditions and Health Managements of Eco-nauts

2006-07-17
2006-01-2296
In FY2005, the first series of seven-day closed habitation experiments was conducted using the Closed Ecology Experiment Facilities (CEEF). The operation period of CEEF is planned to be extended to four months by FY2009. The CEEF is a two-manned system. The habitants, called “Eco-nauts”, are responsible for operating the system as a part of an artificial environment. Therefore, their continuous health checks are very important to the success of the habitation experiments. To check their health condition, medical examinations were carried out before, right after and two months after the series of experiments. During each experiment, physical data were obtained and evaluated by medical doctors using a web-video-meeting system. The primary objective of this study was to verify if the schedule and examinations selected for the health check of the Eco-nauts were successfully carried out.
Technical Paper

Air Circulation Confinement Experiments in the CEEF: Physiological Status in Econauts through Repeated Seven-day Habitations

2006-07-17
2006-01-2294
Closed Ecology Experimental Facilities, CEEF, is designed to regenerate everything required for living, such as air, water, and food. Researchers called “econauts” play a crucial role in maintaining the system in good order. CEEF must involve confinement, which is one of the major factors responsible for deterioration in crew health and performance. Two econauts repeated 7-day habitation in the CEEF 3 times in 2005. Blood cells, hormones and mood status were analyzed. Although clinically no problem, changes of mood status and a stress hormone correlated in an econaut. Characteristic changes were observed in leukocyte ratio. These data are essential in considering the effects of forthcoming long-term habitation in CEEF.
Technical Paper

Air Circulation Confinement Experiments in the CEEF: Psychological Status in Eco-nauts through Repeated Seven-Day Habitations

2006-07-17
2006-01-2293
The Closed Ecology Experimental Facilities (CEEF), is designed to simulate material circulation, and is an artificial closed agricultural ecosystem with plants, humans and animals. The first seven-day air circulated confinement experiments using the CEEF were conducted three times. The experiments included psychological monitoring of two crew members named “Eco-nauts”. Even though there was some trouble with the CEEF regarding the atmospheric gases (which one of the Eco-nauts discovered himself), all three experiments were completed without critical problems and both Eco-nauts maintained a stable psychological status. Through the experiments, it was found that the interior environment of the CEEF could fluctuate within short time periods, and that frequent monitoring by the instantaneous and sensitive Face Scale Test allowed scoring of the Eco-nauts' response to such fluctuations.
Technical Paper

Analysis of Photosynthesis and Biomass Allocation for Simulation of Edible and Inedible Biomass Production and Gas Exchange of Main Crops within Ceef

2002-07-15
2002-01-2484
The plant system plays roles of edible biomass production, O2 production, CO2 removal, and so on, in bioregenerative life support systems. In order to simulate the edible and inedible biomass production and gas exchange of crops, it is necessary to construct reliable dynamic prediction models for each crop considering not only short-term environmental effects but also its long-term effects, because response of plant system is highly dependent on plant age, plant size, and environmental condition experienced by the plant. Closed Plantation Experiment Facility (CPEF) of Closed Ecology Experiment Facilities (CEEF) has three plantation chambers with artificial lighting system, which has maximum capability for providing PPFD of approximately 1900 μmol·m-2·s-1 for crops at canopy top level in these chambers. Each even-aged population of rice and soybean was grown in each plantation chamber.
Technical Paper

Application of Participation Factor Focusing on Response at Specific Part for Vibration Evaluation of Motorcycle Frame

2022-01-09
2022-32-0037
In this study, we efficiently predict the vibration response of a design shape at a low computational cost in the early development stage, select design proposals with good characteristics from many proposals devised by the designer at the early stage, and forward them to the next stage to achieve the front-loading of development while increasing product value. The application of participation factor (PF) focusing on the response at a specific part for vibration evaluation of a motorcycle frame is described. To reduce the motorcycle frame vibration, an eigenvalue analysis was performed, and appropriate design change proposals were efficiently selected using partial participation factor (PPF), an index showing the relevance of vibration of specific parts or positions. Using the PPF, we extracted which vibration modes considerably contribute to the vibration response of the part of interest.
Technical Paper

Automated Inspection Utilizing Deep Learning for Polished Skin

2024-03-05
2024-01-1939
This technical paper reports the development of an automatic defect detector utilizing deep learning for “polished skins”. Materials with a “polished skin” are used in the fabrication of the external plates of commercial airplanes. The polished skin is obtained by polishing the surface of an aluminum clad material, and they are visually inspected, which places a significant burden on inspectors to find minute defects on relatively large pieces of material. Automated inspection of these skins is made more difficult because the material has a mirror finished surface. Defects are broadly classified into three categories: dents, bumps, and discolorations. Therefore, a defect detector must be able to detect these types of defects and measure the defects’ surface profile. This technical paper presents details related to the design and manufacture of an inexpensive automated defect detector that demonstrates a sufficiently high level of performance.
Technical Paper

Carbon Dioxide Separation and Recovery from the Closed Animal Breeding and Habitation Module of the CEEF during Closed Habitation Experiments

2006-07-17
2006-01-2076
In the Closed Ecology Experiment Facilities (CEEF), an artificial ecosystem including crops, Shiba goats, and human inhabitants is to be constructed in order to conduct long-term habitation experiments. For carbon circulation in this artificial ecosystem, CO2 needs to be recovered from the air of animal breeding and habitation rooms using a CO2 separator and to be injected into growth chambers for consumption in crop photosynthesis. Moreover, daily crop yield from the growth chambers needs to be stabilized to drive carbon circulation in the artificial ecosystemwithout huge buffers. Because crops are cultivated in a staggered manner, controlling atmospheric CO2 concentration in the growth chambers at a constant level during light periods throughout crop cultivation is necessary for stabilizing daily crop yield.
Technical Paper

Carbon Flow in an Artificial Ecosystem Comprised of Crew, Goats and Crops for Three 1-Week Confined Habitation Experiments Using CEEF

2006-07-17
2006-01-2075
Three 1-week experiments were conducted from September to October of 2005 in which two human subjects called as eco-nauts were enclosed and worked in an airtight facility called Closed Ecosystem Experiment Facilities (CEEF). The test involved connecting a Plant Module (PM) with 23 crops, including rice, soybean, peanut, and sugar beet, to an Animal & Habitation Module (AHM), which included the eco-nauts and two Shiba goats. Although only 34% (by weight) of the food consumed by the eco-nauts was produced by crops in the PM in the first experiment, it was 81% in the second and third experiments. As for feed for the goats, although all was Timothy hay was supplied from outside in the first experiment, all of the feed (rice straw, soybean leaf and peanut shell) was produced in the PM in the second and third experiments. In all these experiments, the crops produced more oxygen than the amount consumed by respiration of human and animals.
Technical Paper

Circulation of Water in Addition to CO2, O2 and Plant Biomass in an Artificial Ecosystem Comprised of Humans, Goats and Crops During Three 2-Weeks Closed Habitation Experiments Using CEEF

2007-07-09
2007-01-3091
The Closed Ecology Experiment Facilities (CEEF) were installed to collect data for realistic estimation of radiocarbon transfer in the ecosystem. Two-week experiments were conducted three times from September to November of 2006, in which two human subjects called as eco-nauts were enclosed and worked in an airtight facility, the CEEF. The eco-nauts were changed after a week from beginning of each experiment. In these experiments, a Plant Module (PM) with 23 crops, including rice, soybean, peanut, and sugar beet, was connected to an Animal & Habitation Module (AHM) which included the eco-nauts and two goats. 91.8-94.6% (by weight) of the food consumed by the eco-nauts and 79% of the feed to the goats (straw, leaf and bran of rice, leaf and stem of soybean, and leaf, stem and shell of peanut) were produced from crops in the PM. Amount of oxygen produced by the crops was more than the amount consumed by respiration of human and animals in these experiments.
Technical Paper

Considerations of Material Circulation in CEEF Based on the Recent Operation Strategy

2003-07-07
2003-01-2453
In the Closed Ecology Experiment Facilities (CEEF), with integrating the Closed Plantation Experiment Facilities (CPEF) and the Closed Animal Breading & Habitation Facilities (CABHF), closed habitation experiments without material exchange with the outside will be conducted after the 2005 fiscal year. Cultivation experiments of about 30 crops and the integrating test of the material circulation system required for the closed habitation experiments have been performed since 2000 fiscal year. Using data reported in these experiments, material circulation in CEEF is simulated based on the recent operation strategy, and the storage capacity needed for the buffer of an air processing subsystem was estimated. In order for two humans to dwell over 120 days, the storage capacities of the carbon dioxide tank, the oxygen tank, and the waste gas tank in CPEF, and the carbon dioxide tank and the oxygen tank in CABHF are 820 g, 2830 g, 4425 g, 1780 g, and 1792 g, respectively.
Technical Paper

Design of Nitrogen Fixation System for CEEF

1995-07-01
951583
The system design of the Nitrogen Fixation System (NFS) for CEEF has been carried out. The system is a fertilizer production process for plant cultivation from air and water. Newly developed technologies are adopted as key processes of the system. Use of physico-chemical methods made the total system compact, energy efficient and controllable. The NFS is completely self-confined and generating no unnecessary byproducts. The system has a applicability for future lunar or Mars base CELSS system.
Technical Paper

Desorbing Test on Trace Contaminants for the Japanese Closed Ecology Experiment Facilities (CEEF)

1995-07-01
951582
In the closed environments, removal of trace contaminants generated from persons, animals, and plants is important function to keep the environment below the allowable level. We conducted the fundamental tests in order to confirm design of TCCA (Trace Contaminants Control Assembly) for Closed Ecology Experiment Facilities (CEEF), and obtained the following results; 1) The palladium-on-alumina catalyst is suitable for CO, CH4, C2H4 conversion at temperature lower than 400°C. 2) The alkali impregnated AC (activated charcoal) is effective for NO2, SO2 removal and prevents catalyst poisoning from SO2. 3) The active-desorbing conducted by hot air blow-throw an AC is effective for C2H5OH, CH2Cl2 desorbing. We discuss the fundamental test and design conditions for TCCA.
Technical Paper

Development of Advanced Life Support Systems Control Software Considering Computational Effort and Mathematical Validity

2007-07-09
2007-01-3025
A habitation experiment using the Closed Ecology Experiment Facilities was started in 2005. In the future, the stays will be gradually extended. We have been developing the three layered control software for a Control Computer System of the Closed Ecology Experiment Facilities in order to back up the habitation experiments. In this paper, we will show the development of an operation scheduling system for one of the three layers, such as at the planning and scheduling level, and discuss the development of a scheduling algorithm that does not cause the complexity of the ALS scheduler to be exponentially increased.
Technical Paper

Development of Advanced Life Support Systems Control Software Integrating Operators' Empirical Knowledge

2008-06-29
2008-01-1973
We developed an Advanced Life Support systems scheduler (ALS scheduler) to back up the habitation experiments of Closed Ecology Experiment Facilities (CEEF), and integrated the Lagrangian decomposition and coordination method for a scheduling algorithm of the scheduler. Later research revealed that when comparing solutions obtained by the Lagrangian decomposition and coordination method and by a skilled operator, respectively, a schedule sought by the skilled operator has different features from those of a schedule sought by the Lagrangian decomposition and coordination method. This paper describes how to generate a schedule such as one created by a skilled operator, while reducing complexity by integrating empirical knowledge to the Lagrangian decomposition and coordination method.
Technical Paper

Development of Alternative Fuel Content Estimation Method and Apparatus

2013-10-15
2013-32-9156
Environmental and energy independence concerns have stimulated the development of an apparatus for alternative fuel. It estimates the ethanol content in the fuel in order to perform a reliable combustion. One means for measuring the ratio of ethanol present in the fuel tank is to provide a fuel composition sensor. However, such a fuel composition sensor increases the number of parts and causes the cost issues in motorcycles. We used an oxygen sensor disposed to the exhaust pipe to estimate the ethanol content without increasing the parts and costs. The common method of the estimation is the oxygen feed-back in stoichiometric air fuel ratio condition. Unfortunately, two-wheel vehicles are often operated in rich conditions and have less chance of stoichiometric condition. In this study, we used a one-liter four-cylinder motorcycle, and have developed a practical method to estimate the ethanol content even in the not-stoichiometric condition.
Technical Paper

Development of Spraying Technology for Improving the Wear Resistance of Engine Cylinder Bores

2003-09-15
2003-32-0066
In response to design requirements for lower weight and higher output, the motorcycle engine cylinder block has evolved from a cast cylinder block to an aluminum alloy cylinder block whose bore walls are surface-treated for wear-resistance. Hard-chromium plating, nickel-compound plating, and the like are in wide use as the wear-resistance surface treatment method, but spray technology has recently been attracting attention because of less impact on the environment, superior initial running-in performance and good oil retention. We have been applying a unique spraying method called wire explosion spraying to those models with a special need for wear-resistance surface. In this report we describe our wire explosion spray technology. With the aim of improving the bond strength of the sprayed coat, we studied the effects of the collided particles' form on bond strength in the wire explosion spraying conditions.
Technical Paper

Development of a Drill Bit for CFRP/Aluminum-Alloy Stack: To Improve Flexibility, Economical Efficiency and Work Environment

2013-09-17
2013-01-2227
In the expansion of composite material application, it is one of the most important subjects in assembly of aircraft structure how drilling of composite/metal stack should be processed in an efficient way. This paper will show the result of development of a drill bit for CFRP/Aluminum-alloy stack by Kawasaki Heavy Industries (KHI) and Sumitomo Electric Hardmetal (SEH). In order to improve workability and economic performance, the drill bit which enables drilling CFRP/Al-alloy stack: at 1 shot; from both directions; without air blow and coolant (just usual vacuuming); was required. A best mix drill bit which has smooth multi angles edge and pointed finishing edge was produced as a result of some trials. Developed drill bit achieved required performance and contributed to large cost reduction, labor hour saving, production speed increase and work environment improvement.
X