Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Study on Combustion Control by Using Internal and External EGR for HCCI Engines Fuelled with DME

2006-11-13
2006-32-0045
The Homogeneous Charge Compression Ignition (HCCI) engine is possible to achieve high thermal efficiency and low emissions. One of the main challenges with HCCI engines is structuring the systems to control combustion phasing, crank angle of 50% heat release (CA50), for keeping high thermal efficiency and avoiding an excessive rate of pressure rise which causes knocking, when operating conditions vary. Though some HCCI combustion control systems, for example Variable Valve Timing System and Variable Compression Ratio System, have been suggested, these control systems are complex and heavy. In this study, for the development of a lightweight and small-sized generator HCCI engine fuelled with Dimethyl Ether (DME) which is low-emission and easy to autoignite, a simple HCCI combustion control system is suggested, and the control system is evaluated experimentally.
Technical Paper

An Investigation into Cycle-to-Cycle Variations of IMEP using External EGR and Rebreathed EGR in an HCCI Engine, Based on Experimental and Single-Zone Modeling

2015-09-01
2015-01-1805
The characteristics of cycle-to-cycle variations of indicated mean effective pressure (IMEP) with combustion-phasing retard have been investigated experimentally and computationally in an homogeneous charge compression ignition (HCCI) engine using dimethyl ether (DME). The experiments were conducted in a single-cylinder HCCI research engine equipped with an exhaust gas recirculation (EGR) passage for external EGR and a two-stage exhaust cam for rebreathed EGR. To understand the chemical effects of rebreathed EGR, which is assumed to contribute to the autoignition enhancement, the computations were performed with a single-zone model of CHEMKIN using a chemical-kinetic mechanism developed by combining DME mechanism and NOx submechanism.
Technical Paper

An Investigation of the Effect of Thermal Stratification on HCCI Combustion by using Rapid Compression Machine

2007-07-23
2007-01-1870
A significant drawback to HCCI engines is the knocking caused by rapid increases in pressure. Such knocking limits the capacity for high-load operation. To solve this problem, thermal stratification in the combustion chamber has been suggested as possible solution. Thermal stratification has the potential to reduce the maximum value of the rate of pressure increase combustion by affecting the local combustion start time and extending the duration of combustion. The purpose of this study was to experimentally obtain fundamental knowledge about the effect of thermal stratification on the HCCI combustion process. Experiments were conducted in a rapid compression machine (RCM) equipped with a quartz window to provide optical access to the combustion chamber. The machine was fueled with DME, n-Butane, n-Heptane and iso-Octane, all of which are currently being investigated as alternative fuels and have different low temperature characteristics.
Technical Paper

An Investigation of the Effects of Fuel Inhomogeneity on the Pressure Rise Rate in HCCI engine using Chemiluminescence Imaging

2010-09-28
2010-32-0097
Theoretically, homogeneous charge compression engines (HCCI) are able to grant a high thermal efficiency, as well as a low NOx and particulate emissions. This ability is mainly due to the combustion process, which, contrary to both Diesel and Gasoline engine, is homogeneous in time and space within the combustion chamber. But despite these advantages, the engine operating condition is limited by the narrow boundaries of misfire at low load and knocking at high load. For that matter, one of the numerous ways of overcoming knocking is to deliberately create fuel inhomogeneities within the combustion chamber, since it has proved to lengthen combustion duration and to drastically reduce maximum pressure rise rate (PRR). Nevertheless, though the global effects of fuel inhomogeneities on PRR have been studied, we lack information that explains this phenomenon.
Technical Paper

An Investigation of the Potential of Thermal and Mixing Stratifications for Reducing Pressure Rise Rate on HCCI Combustion by using Rapid Compression Machine

2009-11-03
2009-32-0085
Thermal and mixing stratifications have been thought as one of the ways to avoid an excessive pressure rise on HCCI combustion. The purpose of this research is to investigate the potential of thermal and mixing stratifications for reducing PRR (Pressure Rise Rate) on HCCI combustion. The pre-mixture with thermal and mixing stratifications is charged in RCM (Rapid Compression Machine). After that, the pre-mixture is compressed and in that process, in-cylinder gas pressure and chemiluminescence images are obtained and analyzed. Furthermore, experimental results are compared with the computational results calculated by using multi-zone model for analyzing these mechanisms.
Technical Paper

An Investigation on DME HCCI Engine about Combustion Phase Control using EGR Stratification by Numerical Analysis

2012-10-23
2012-32-0077
This work has been investigated the potential of in-cylinder EGR stratification for reducing the pressure rise rate of DME HCCI engines, and the coupling of both thermal stratification and fuel stratification. The numerical analyses were done by using five-zone version of CHEMKIN-II kinetics rate code, and kinetic mechanics for DME. The effects of inert components were used for the presence of EGR in calculation. Three cases of EGR stratification were tested on both thermal stratification and fuel stratification at the fixed initial temperature, pressure and fueling rate at BDC. In order to explore the appropriate stratification of EGR, EGR width was employed from zero to thirty percent. Firstly, EGR homogeneity case which means EGR width zero was examined. Secondly, EGR is located densely in hotter zone for combining with thermal stratification or in richer zone for a combination with fuel stratification. Lastly, the case was judged inversely with the second case.
Technical Paper

Analysis of the Effect of Charge Inhomogeneity on HCCI Combustion by Chemiluminescence Measurement

2004-06-08
2004-01-1902
In the HCCI Engine, inhomogeneity in fuel distribution and temperature in the pre-mixture exists microscopically, and has the possibility of affecting the ignition and combustion process. In this study, the effect of charge inhomogeneity in fuel distribution on the HCCI combustion process was investigated. Two-dimensional images of the chemiluminescence were captured by using a framing camera with an optically accessible engine in order to understand the spatial distribution of the combustion. DME was used as a test fuel. By changing a device for mixing air and fuel in the intake manifold, inhomogeneity in fuel distribution in the pre-mixture was varied. The result shows that luminescence is observed in a very short time in a large part of the combustion chamber under the homogeneous condition, while luminescence appears locally with considerable time differences under the inhomogeneous condition.
Technical Paper

Analysis of the combustion dispersion mechanism in HCCI Engine

2009-11-03
2009-32-0086
Delaying CA50(Crank Angle of 50% Heat Release) of the HCCI engine to expansion stroke can lead to high indicated thermal efficiency as well as the avoidance of knocking. However, this method could induce the problem of cycle variability. In this study, the cycle-to-cycle variation of a HCCI engine fueled with DME was investigated. Experimental parameters of each cycle, such as in-cylinder temperature, pressure and gas flow rate, were recorded by fast response system, and analyzed consequently. Moreover, the interdependency between the combustion and the performance parameters were evaluated.
Technical Paper

Basic Research on the Suitable Fuel for HCCI Engine From the Viewpoint of Chemical Reaction

2005-04-11
2005-01-0149
In this study, attention was paid to the method of mixing fuel to solve one of problems of the HCCI engine, which is the avoidance of knocking. The objectives of the work reported in this paper were to research the characteristics of HCCI combustion of the Methane/DME/air pre-mixture in the experiment and to check the oxidation reaction in two cases: when DME was used as an ignition accelerator for the Methane/air pre-picture, and when Hydrogen was used as ignition accelerator. Furthermore, from these results reference was made about basic specifications required fuel for an HCCI engine.
Technical Paper

Development of the Control System Using EGR for the HCCI Engine Running on DME

2005-10-12
2005-32-0062
Homogeneous Charge Compression Ignition (HCCI) engine attracts much attention because of its high thermal efficiency and low NOx, PM emissions. On the other hand, Di-Methyl Ether (DME) is expected as one of alternative fuel for the internal combustion engines. In this study, four-stroke HCCI engine running on DME is developed to make it realistic application in production engines. This paper shows construction of the control method using both internal EGR at high temperature and external EGR at low temperature and estimates the performance of developed HCCI engine. Besides combustion characteristics of DME and the effects of EGR are researched with experiment and numerical calculation with elementary reactions. As a result, developed HCCI engine got comparable high thermal efficiency to conventional diesel engine but much lower Indicated Mean Effective Pressure (IMEP) than that. Meanwhile it can be said that DME is suitable fuel for the HCCI engines in combustion characteristics.
Technical Paper

Effect of Degree of Unmixedness on HCCI Combustion Based on Experiment and Numerical Analysis

2006-11-13
2006-32-0046
The purpose of this study was to gain a better understanding of the effects of in-cylinder gas temperature stratification on reducing the pressure-rise rate in HCCI combustion. HCCI combustion was investigated using an optically accessible engine and direct visualization of the combustion chemiluminescence. The engine was fueled with Di-Methyl Ether. Computational work was conducted on the gas compression and expansion strokes in HCCI engine with simple 0-dimensinal multi-zones model. When fuel inhomogeneous charging in experiment, maximum heat release rate decreased. Combustion duration got longer. Maximum pressure-rise rate decreased. Chemiluminescence, of which transition was identified from the side of intake valve to the side of exhaust valve, was observed. It is need for total moderate heat release to get local moderate combustion with not overall but continuous combustion in chamber.
Technical Paper

Influence of ethanol blending on knocking in a lean burn SI engine

2019-12-19
2019-01-2152
Lean burn is one method for improving thermal efficiency in spark ignition (SI) engines. Suppression of knocking provides higher thermal efficiency, and ethanol blending is considered an effective way to suppress knocking due to its high octane and high latent heat of evaporation. We investigate the effect of ethanol blending on knocking in an SI engine under lean operating conditions. The Livengood-Wu (LW) integral was performed based on ignition delay duration estimated from a zero-dimensional detailed chemical reaction calculation with pressure and temperature histories. Knocking was suppressed and thermal efficiency increased with ethanol-gasoline blending fuel, even at 0.5 equivalence ratio. Decrease in unburned gas temperature by latent heat of evaporation had a comparable influence on knocking suppression, which was supported by LW integral analysis.
Technical Paper

Numerical Investigation of a Potential of Dedicated EGR System for Increasing Thermal Efficiency of SI Engines Fueled with Methane and Propane

2015-09-01
2015-01-1883
This study tried to find a potential of dedicated EGR (d-EGR) system added to the four-cylinder spark ignition (SI) engine to decrease heat loss (Qheatloss) and improve thermal efficiency (ηth). Test fuels were chosen by methane and propane. PREMIX code in CHEMKIN-PRO was employed to calculate laminar burning velocity (SL) and flame temperature (Tf). Wiebe function and Wocshni's heat transfer coefficient were considered to calculate ηth. The results show that the d-EGR system increased ηth and it was higher than that of stoichiometric combustion of conventional SI engines due to the low Tf and fast SL.
Technical Paper

Simultaneous Measurements of Phosphor Thermometry and PIV for High-Temperature Gas Flows

2015-09-01
2015-01-2002
This study reports a novel alternative technique that can achieve simultaneous two-dimensional temperature and velocity measurements in gas flow. This method is combining phosphor thermometry and PIV operated by a single laser unit. The temperature distribution was obtained from phosphorescence by using two-color method, and the velocity distribution was obtained from two phosphor particle images which were taken in time series during the persistence of the phosphorescence. The measured temperature and velocity were agreed with that measured by thermocouple and that expected as theoretical distribution in the high-temperature gas flows, respectively.
Technical Paper

The Research about Engine Optimization and Emission Characteristic of Dual Fuel Engine Fueled with Natural Gas and Diesel

2012-10-23
2012-32-0008
CNG/diesel dual-fuel engine is using CNG as a main fuel, and injects diesel only a little as an ignition priming. In this study, remodeling an existing diesel engine into dual-fuel engine that can inject diesel with high pressure by CRDI (Common Rail Direct Injection), and injecting CNG at intake port for premixing. The results show that CNG/diesel dual-fuel engine satisfied coordinate torque and power with conventional diesel engine. And CNG alternation rate is over 89% in all operating ranges of CNG/diesel dual-fuel engine. PM emission is lower 94% than diesel engine, but NOx emission is higher than diesel engine. The output of dual fuel mode is 95% by the diesel mode. At this time, amount of CO₂ and PM are decreased while CO, NOx, and THC are increased. In NEDC mode, exhaust gases except NOx are decreased.
Technical Paper

Two–Dimensional Imaging of Formaldehyde Formed During the Ignition Process of a Diesel Fuel Spray

2000-03-06
2000-01-0236
The time of, and location where ignition first occurs in a diesel fuel spray were investigated in a rapid compression machine (RCM) using the two–dimensional techniques of silicone oil particle scattering imaging (SSI), and the planar laser induced fluorescence (LIF) of formaldehyde. Formaldehyde has been hypothesized to be one of the stable intermediate species marking the start of oxidation reactions in a transient spray under compression ignition conditions. In this study, the LIF images of the formaldehyde formed in a diesel fuel spray during ignition process have been successfully obtained for the first time by exciting formaldehyde with the 3rd harmonic of the Nd:YAG laser. SSI images of the vaporizing spray, and the LIF images of formaldehyde were obtained together with the corresponding time record of combustion chamber pressures at initial ambient temperatures ranging from 580 K to 790 K.
X