Refine Your Search

Topic

Search Results

Technical Paper

A Forward Collision Warning System Using Deep Reinforcement Learning

2020-04-14
2020-01-0138
Forward collision warning is one of the most challenging concerns in the safety of autonomous vehicles. A cooperation between many sensors such as LIDAR, Radar and camera helps to enhance the safety. Apart from the importance of having a reliable object detector, the safety system should have requisite capabilities to make reasonable decisions in the moment. In this work, we concentrate on detecting front vehicles of autonomous cars using a monocular camera, beyond only a detection method. In fact, we devise a solution based on a cooperation between a deep object detector and a reinforcement learning method to provide forward collision warning signals. The proposed method models the relation between acceleration, distance and collision point using the area of the bounding box related to the front vehicle. An agent of learning automata as a reinforcement learning method interacts with the environment to learn how to behave in eclectic hazardous situations.
Technical Paper

An Analysis of the Vehicle Dynamics Behind Pure Pursuit and Stanley Controllers

2023-04-11
2023-01-0901
As automated driving becomes more common, simulation of vehicle dynamics and control scenarios are increasingly important for investigating motion control approaches. In this work, a study of the differences between the Pure Pursuit and Stanley autonomous vehicle controllers, based on vehicle dynamics responses, is presented. Both are geometric controllers that use only immediate vehicle states, along with waypoint data, to control a vehicle’s future direction as it proceeds from point to point, and both are among the most popular lateral controllers in use today. The MATLAB Automated Driving Toolbox is employed to implement and virtually test the Pure Pursuit and Stanley lateral controllers in different driving scenarios. These include low intensity scenarios such as city driving, and emergency maneuvers such as the moose test.
Technical Paper

Autonomous Lane Change Control Using Proportional-Integral-Derivative Controller and Bicycle Model

2020-04-14
2020-01-0215
As advanced vehicle controls and autonomy become mainstream in the automotive industry, the need to employ traditional mathematical models and control strategies arises for the purpose of simulating autonomous vehicle handling maneuvers. This study focuses on lane change maneuvers for autonomous vehicles driving at low speeds. The lane change methodology uses PID (Proportional-Integral-Derivative) controller to command the steering wheel angle, based on the yaw motion and lateral displacement of the vehicle. The controller was developed and tested on a bicycle model of an electric vehicle (a Chevrolet Bolt 2017), with the implementation done in MATLAB/Simulink. This simple mathematical model was chosen in order to limit computational demands, while still being capable of simulating a smooth lane change maneuver under the direction of the car’s mission planning module at modest levels of lateral acceleration.
Technical Paper

Characteristics of Trailer Rear Impact Guard - Interdependence of Guard Strength, Energy Absorption, Occupant Acceleration Forces and Passenger Compartment Intrusion

2008-04-14
2008-01-0155
FMVSS 223 and 224 set standards for “Rear Impact Protection” for trailers and semi-trailers with a gross weight rating greater than 10000 pounds. A limited amount of experimental data is available for evaluating the different performance attributes of rear impact guards. The crash tests are usually limited to fixed parameters such as impact speed, guard height, strength and energy absorption, etc. There also seems to be some misunderstanding of the interdependence of guard strength and energy absorption, and their combined effect on the guard's ability to limit underride while keeping occupant acceleration forces in a safe range. In this paper, we validated the Finite Element (FE) model of an existing rear impact guard against actual FMVSS 223 tests. We also modified a previously evaluated FE model of a 1990 Ford Taurus by updating its hood geometry and material properties.
Technical Paper

Cradle to Grave Comparison on Emission Produced by EV and ICE Powertrains

2024-04-09
2024-01-2402
Since the popularization of the Electric Vehicle (EV) there has been a large movement of consumers, governments, and the automotive industry due to its environmentally friendly characteristics. Unlike an IC engine, the batteries use multitudes of rare earth minerals and complex manufacturing processes which in some cases have been shown to produce as many emissions as an ICE vehicle over its entire lifespan. Another unnoticed important environmental concern has been the final recycling and disposal of the power train after its use. Unlike an ICE engine, which can be melted down or re-used, recycling batteries are much more difficult. In most cases the recycling process and the byproducts produced can be very harmful to the environment. This paper aims to be a complete cradle-to-grave analysis of all emissions produced in the life of an EV battery.
Technical Paper

Data-Driven Modeling of Linear and Nonlinear Dynamic Systems for Noise and Vibration Applications

2023-05-08
2023-01-1078
Data-driven modeling can help improve understanding of the governing equations for systems that are challenging to model. In the current work, the Sparse Identification of Nonlinear Dynamical systems (SINDy) is used to predict the dynamic behavior of dynamic problems for NVH applications. To show the merit of the approach, the paper demonstrates how the equations of motions for linear and nonlinear multi-degree of freedom systems can be obtained. First, the SINDy method is utilized to capture the dynamic behavior of linear systems. Second, the accuracy of the SINDy algorithm is investigated with nonlinear dynamic systems. SINDy can output differential equations that correspond to the data. This method can be used to find equations for dynamical systems that have not yet been discovered or to study current systems to compare with our current understanding of the dynamical system.
Technical Paper

Design and Analysis of Kettering University’s New Proving Ground, the GM Mobility Research Center

2020-04-14
2020-01-0213
Rapid changes in the automotive industry, including the growth of advanced vehicle controls and autonomy, are driving the need for more dedicated proving ground spaces where these systems can be developed safely. To address this need, Kettering University has created the GM Mobility Research Center, a 21-acre proving ground located in Flint, Michigan at the former “Chevy in the Hole” factory location. Construction of a proving ground on this site represents a beneficial redevelopment of an industrial brownfield, as well as a significant expansion of the test facilities available at the campus of Kettering University. Test facilities on the site include a road course and a test pad, along with a building that has garage space, a conference room, and an indoor observation platform. All of these facilities are available to the students and faculty of Kettering University, along with their industrial partners, for the purpose of engaging in advanced transportation research and education.
Journal Article

Design and Control of Vehicle Trailer with Onboard Power Supply

2015-04-14
2015-01-0132
Typically, when someone needs to perform occasional towing tasks, such as towing a boat on a trailer, they have two choices. They can either purchase a larger, more powerful vehicle than they require for their regular usage, or they can rent a larger vehicle when they need to tow something. In this project, we propose a third alternative: a trailer with an on-board power supply, which can be towed by a small vehicle. This system requires a means of sensing how much power the trailer's power supply should provide, and an appropriate control system to provide this power. In this project, we design and model the trailer, a standard small car, and the control system, and evaluate the concept's feasibility. We have selected a suitable power source for the trailer, a DC motor, coupled directly to the trailer's single drive wheel, which allow us to dispense with the need for a differential.
Technical Paper

Development of Clean Snowmobile Technology for Operation on High-Blend Ethanol for the 2008 Clean Snowmobile Challenge

2008-09-09
2008-32-0053
Clean snowmobile technology has been developed using methods which can be applied in the real world with a minimal increase in cost. Specifically, a commercially available snowmobile using a two cylinder, four-stroke engine has been modified to run on high-blend ethanol (E-85) fuel. Additionally, a new exhaust system which features customized catalytic converters and mufflers to minimize engine noise and exhaust emissions has developed. Finally, a number of additional improvements have been made to the track to reduce friction and diminish noise. The results of these efforts include emissions reductions of 94% when compared with snowmobiles operating at the 2012 U.S. Federal requirements.
Technical Paper

Development of Clean Snowmobile Technology for the 2005 SAE Clean Snowmobile Challenge

2005-10-24
2005-01-3679
Kettering University's Clean Snowmobile Challenge student design team has developed a new robust and innovative snowmobile for the 2005 competition. This snowmobile dramatically reduces exhaust and noise emissions and improves fuel economy compared with a conventional snowmobile. Kettering University has utilized a modified snowmobile in-line four cylinder, four-stroke, engine. The team added an electronically-controlled fuel-injection system with oxygen sensor feedback to this engine. This engine has been installed into a 2003 Yamaha RX-1 snowmobile chassis. Exhaust emissions have been further minimized through the use of a customized catalytic converter and an electronically controlled closed-loop fuel injection system. A newly designed and tuned exhaust as well as several chassis treatments have aided in minimizing noise emissions.
Technical Paper

Development of Clean Snowmobile Technology for the 2006 SAE Clean Snowmobile Challenge

2006-11-13
2006-32-0051
Kettering University's entry for the 2006 Clean Snowmobile challenge utilizes a Polaris FST Switchback. This snowmobile having a two cylinder, four-stroke engine has been modified to run on ethanol (E-85). The student team has designed and built a new exhaust system which features customized catalytic converters to minimize engine out emissions. A number of improvements have been made to the track to reduce friction and diminish noise.
Technical Paper

Development of Snowmobile Technology for Operation on High-Blend Ethanol

2007-10-30
2007-32-0114
Kettering University has developed a cleaner and quieter snowmobile using technologies and innovative methods which can be applied in the real world with a minimal increase in cost. Specifically, a commercially available snowmobile using a two cylinder, four-stroke engine has been modified to run on high-blend ethanol (E-85) fuel. Further, a new exhaust system which features customized catalytic converters and mufflers to minimize engine noise and exhaust emissions has developed. A number of additional improvements have been made to the track to reduce friction and diminish noise. This paper provides details of the snowmobile development the results of these efforts on performance and emissions. Specifically, the Kettering University snowmobile achieved reductions of approximately 72% in CO, and 98% in HC+NOx when compared with the 2012 standard. Further, the snowmobile achieved a drive by noise level of 73 dbA while operating on hard packed snow.
Technical Paper

Effect of Chassis Design Factors (CDF) on the Ride Quality Using a Seven Degree of Freedom Vehicle Model

2004-03-08
2004-01-1555
The kinematics and kinetics of a seven degree of freedom vehicle ride model with independent front and rear suspension are developed. Lagrange's equation is used to obtain the mathematical model of the vehicle. The equations of motion are transformed to state space equations in Linear Time Invariant (LTI) form. The effect of Chassis Design Factors (CDF) such as stabilizer bars, stiffness', Dynamic Index in Pitch (DIP) and mass ratio on the vehicle ride quality are investigated. The ride quality of the 3 dimensional vehicle that includes bounce, pitch, roll and unsprung masses motion is demonstrated in time domain response. The vehicle is considered as a Multi-Input-Multi-Output System (MIMO) subjected to deterministic ground inputs. Outputs of interest for the ride quality investigation are vertical and angular displacement and vertical accelerations. Numerical computer simulation analysis is performed using MATLAB® software.
Technical Paper

Effect of High-Blend Ethanol Fuel on the Performance and Emissions of a Small Off-Road Engine with Minimal Modifications

2022-08-30
2022-01-1031
Much development in the automotive industry relates to the use of high-content ethanol blended fuels to reduce the emissions produced by on-road engines/vehicles. However, less research has been done on the effect of operating small off-road engines (SORE) on high-blend ethanol fuels without substantial modifications. Most manufacturers of such engines only certify proper operation on low content ethanol blends such as E10 (10% ethanol, 90% gasoline by volume). This paper focuses on the use of E77 fuel in a small off-road engine which is speed-governed. Such engines are commonly used in lawn mowers, small recreational vehicles, or other equipment. The exhaust emissions and performance of the engine were evaluated using the EPA 6-mode duty cycle for small recreational engines where testing and analysis followed the recommendations of SAE J1088. This test cycle consisted of operating the engine at steady state load points using a fixed engine speed.
Technical Paper

External Flow Analysis Over a Car to Study The Influence of Different Body Profiles Using CFD

2001-10-16
2001-01-3085
A vehicle’s performance and fuel economy plays an important role in obtaining a larger market share in the segment. This can be best achieved by optimizing the aerodynamics of the vehicle. Aerodynamics can be improved by altering the bodylines on a vehicle. Its drag coefficient can be maintained at a minimum value by properly designing various component profiles. The stability of a vehicle and Passenger comfort are affected by wind noise that is related to the aerodynamics of a vehicle. To study the effects of the above-mentioned parameters, the vehicle is tested inside a wind tunnel. In this paper, the authors study the body profile for different vehicles and analyze them using Computational Fluid Dynamics software - FLUENT. To study the influence of different body profiles on drag coefficient, 3 different vehicle segments are considered.
Technical Paper

External Flow Analysis of a Truck for Drag Reduction

2000-12-04
2000-01-3500
Aerodynamics of trucks and other high sided vehicles is of significant interest in reducing road side accidents due to wind loading and in improving fuel economy. Recognizing the limitations of conventional wind tunnel testing, considerable efforts have been invested in the last decade to study vehicle aerodynamics computationally. In this paper, a three-dimensional near field flow analysis has been performed for axial and cross wind loading to understand the airflow characteristics surrounding a truck-like bluff body. Results provide associated drag for the truck geometry including the exterior rearview mirror. Modifying truck geometry can reduce drag, improving fuel economy.
Technical Paper

Feasibility Study Using FE Model for Tire Load Estimation

2019-04-02
2019-01-0175
For virtual simulation of the vehicle attributes such as handling, durability, and ride, an accurate representation of pneumatic tire behavior is very crucial. With the advancement in autonomous vehicles as well as the development of Driver Assisted Systems (DAS), the need for an Intelligent Tire Model is even more on the increase. Integrating sensors into the inner liner of a tire has proved to be the most promising way in extracting the real-time tire patch-road interface data which serves as a crucial zone in developing control algorithms for an automobile. The model under development in Kettering University (KU-iTire), can predict the subsequent braking-traction requirement to avoid slip condition at the interface by implementing new algorithms to process the acceleration signals perceived from an accelerometer installed in the inner liner on the tire.
Technical Paper

Investigation of Joint Torque Characteristics for a Mechanical Counter - Pressure Spacesuit

2009-07-12
2009-01-2536
Mechanical counter-pressure (MCP) spacesuit designs have been a promising, but elusive alternative to historical and current gas pressurized spacesuit technology since the Apollo program. One of the important potential advantages of the approach is enhanced mobility as a result of reduced bulk and joint torques, but the literature provides essentially no quantitative joint torque data or quantitative analytical support. Decisions on the value of investment in MCP technology and on the direction of technology development are hampered by this lack of information since the perceived mobility advantages are an important factor. An experimental study of a simple mechanical counter-pressure suit (elbow) hinge joint has been performed to provide some test data and analytical background on this issue to support future evaluation of the technology potential and future development efforts.
Technical Paper

KDepthNet: Mono-Camera Based Depth Estimation for Autonomous Driving

2022-03-29
2022-01-0082
Object avoidance for autonomous driving is a vital factor in safe driving. When a vehicle travels from any random start places to any target positions in the milieu, an appropriate route must prevent static and moving obstacles. Having the accurate depth of each barrier in the scene can contribute to obstacle prevention. In recent years, precise depth estimation systems can be attributed to notable advances in Deep Neural Networks and hardware facilities/equipment. Several depth estimation methods for autonomous vehicles usually utilize lasers, structured light, and other reflections on the object surface to capture depth point clouds, complete surface modeling, and estimate scene depth maps. However, estimating precise depth maps is still challenging due to the computational complexity and time-consuming process issues. On the contrary, image-based depth estimation approaches have recently come to attention and can be applied for a broad range of applications.
Technical Paper

Kettering University's 2003 Design for the Clean Snowmobile Challenge

2003-09-15
2003-32-0076
Kettering University's entry in the 2003 Clean Snowmobile Challenge entails the installation of a fuel injected four-stroke engine into a conventional snowmobile chassis. Exhaust emissions are minimized through the use of a catalytic converter and an electronically controlled closed-loop fuel injection system, which also maximizes fuel economy. Noise emissions are minimized by the use of a specifically designed engine silencing system and several chassis treatments. Emissions tests run during the SAE collegiate design event revealed that a snowmobile designed by Kettering University produces lower unburned hydrocarbon (1.5 to 7 times less), carbon monoxide (1.5 to 7 times less), and oxides of nitrogen (and 5 to 23 times less) levels than the average automobile driven in Yellowstone National Park. The Kettering University entry also boasted acceleration performance better than the late-model 500 cc two-stroke snowmobile used as a control snowmobile in the Clean Snowmobile testing.
X