Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2-step Variable Valve Actuation: System Optimization and Integration on an SI Engine

2006-04-03
2006-01-0040
2-step variable valve actuation using early-intake valve closing is a strategy for high fuel economy on spark-ignited gasoline engines. Two discrete valve-lift profiles are used with continuously variable cam phasing. 2-step VVA systems are attractive because of their low cost/benefit, relative simplicity, and ease-of-packaging on new and existing engines. A 2-step VVA system was designed and integrated on a 4-valve-per-cylinder 4.2L line-6 engine. Simulation tools were used to develop valve lift profiles for high fuel economy and low NOx emissions. The intake lift profiles had equal lift for both valves and were designed for high airflow & residual capacity in order to minimize valvetrain switching during the EPA drive cycle. It was determined that an enhanced combustion system was needed to maximize fuel economy benefit with the selected valve lift profiles. A flow-efficient chamber mask was developed to increase in-cylinder tumble motion and combustion rates.
Technical Paper

A 6-Speed Automatic Transmission Plant Dynamics Model for HIL Test Bench

2008-04-14
2008-01-0630
During the production controller and software development process, one critical step is the controller and software verification. There are various ways to perform this verification. One of the commonly used methods is to utilize an HIL (hardware-in-the-loop) test bench to emulate powertrain hardware for development and validation of powertrain controllers and software. A key piece of an HIL bench is the plant dynamics model used to emulate the external environment of a modern controller, such as engine (ECM), transmission (TCM) or powertrain controller (PCM), so that the algorithms and their software implementation can be exercised to confirm the desired results. This paper presents a 6-speed automatic transmission plant dynamics model development for hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software. The modeling method, model validation, and application in an HIL test environment are described in details.
Technical Paper

A Catalytic Oxidation Sensor for the On Board Detection of Misfire and Catalyst Efficiency

1992-10-01
922248
This paper describes a novel catalytic oxidation sensor which represents an attempt to realise a practical sensor for on vehicle detection of catalyst efficiency and misfire. Via experimental and modelling approaches, promising characteristics are established, which could mean that an application to the on-vehicle detection of catalyst efficiency and misfire is feasible.
Technical Paper

A Characteristic Parameter to Estimate the Optimum Counterweight Mass of a 4-Cylinder In-Line Engine

2002-03-04
2002-01-0486
A dimensionless relationship that estimates the maximum bearing load of a 4-cylinder 4-stroke in-line engine has been found. This relationship may assist the design engineer in choosing a desired counterweight mass. It has been demonstrated that: 1) the average bearing load increases with engine speed and 2) the maximum bearing load initially decreases with engine speed, reaches a minimum, then increases quickly with engine speed. This minimum refers to a transition speed at which the contribution of the inertia force overcomes the contribution of the maximum pressure force to the maximum bearing load. The transition speed increases with an increase of counterweight mass and is a function of maximum cylinder pressure and the operating parameters of the engine.
Technical Paper

A Closed-Loop Drive-train Model for HIL Test Bench

2009-04-20
2009-01-1139
This paper presents a hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software, with a focus on a closed-loop vehicle drive-train model incorporating a detailed automatic transmission plant dynamics model developed for certain applications. Specifically, this paper presents the closed-loop integration of a 6-speed automatic transmission model developed for our HIL transmission controller and algorithm test bench (Opal-RT TestDrive based). The model validation, integration and its application in an HIL test environment are described in details.
Technical Paper

A Comparative Study of the Production Applications of Hybrid Electric Powertrains

2003-06-23
2003-01-2307
In this paper, a comparative study of the production applications of hybrid electric powertrains is presented. Vehicles studied include the Toyota Prius, Honda Insight, Toyota Estima, Toyota Crown, Honda Civic Hybrid, and Nissan Tino. The upcoming Ford Escape Hybrid and General Motors Parallel Hybrid Truck (PHT) will also be included, although advance information is limited. The goal of this paper is to look at what hybrid drivetrain architectures have actually been selected for production and what are the underlying details of these drivetrains. Since hybridizing a powertrain involves significant changes, the powertrain architectures are presented in diagram form, with analysis as to the similarities and advantages represented in these architectures. The specific hybrid functions used to save fuel are discussed. Peak power-to-weight ratio and degree of hybridization are plotted for the vehicles. System voltage versus electric power level are also plotted and analyzed.
Technical Paper

A Control System Methodology for Steer by Wire Systems

2004-03-08
2004-01-1106
Steer by Wire systems provide many benefits in terms of functionality, and at the same time present significant challenges too. Chief among them is to make sure that an acceptable steering feel is achieved. Various aspects of this subjective attribute will be defined mathematically. A control system that is architected specifically to meet these challenges is presented. Furthermore, the design is made such that it would be robust to tire and loading variations. Supporting vehicle data and model results are shown as needed.
Journal Article

A Detailed Chemistry Multi-cycle Simulation of a Gasoline Fueled HCCI Engine Operated with NVO

2009-04-20
2009-01-0130
A previously developed Stochastic Reactor Model (SRM) is used to simulate combustion in a four cylinder in-line four-stroke naturally aspirated direct injection Spark Ignition (SI) engine modified to run in Homogeneous Charge Compression Ignition (HCCI) mode with a Negative Valve Overlap (NVO). A portion of the fuel is injected during NVO to increase the cylinder temperature and enable HCCI combustion at a compression ratio of 12:1. The model is coupled with GT-Power, a one-dimensional engine simulation tool used for the open valve portion of the engine cycle. The SRM is used to model in-cylinder mixing, heat transfer and chemistry during the NVO and main combustion. Direct injection is simulated during NVO in order to predict heat release and internal Exhaust Gas Recycle (EGR) composition and mass. The NOx emissions and simulated pressure profiles match experimental data well, including the cyclic fluctuations.
Technical Paper

A Forward Collision Warning System Using Deep Reinforcement Learning

2020-04-14
2020-01-0138
Forward collision warning is one of the most challenging concerns in the safety of autonomous vehicles. A cooperation between many sensors such as LIDAR, Radar and camera helps to enhance the safety. Apart from the importance of having a reliable object detector, the safety system should have requisite capabilities to make reasonable decisions in the moment. In this work, we concentrate on detecting front vehicles of autonomous cars using a monocular camera, beyond only a detection method. In fact, we devise a solution based on a cooperation between a deep object detector and a reinforcement learning method to provide forward collision warning signals. The proposed method models the relation between acceleration, distance and collision point using the area of the bounding box related to the front vehicle. An agent of learning automata as a reinforcement learning method interacts with the environment to learn how to behave in eclectic hazardous situations.
Journal Article

A Forward-Looking Stochastic Fleet Assessment Model for Analyzing the Impact of Uncertainties on Light-Duty Vehicles Fuel Use and Emissions

2012-04-16
2012-01-0647
Transport policy research seeks to predict and substantially reduce the future transport-related greenhouse gas emissions and fuel consumption to prevent negative climate change impacts and protect the environment. However, making such predictions is made difficult due to the uncertainties associated with the anticipated developments of the technology and fuel situation in road transportation, which determine the total fuel use and emissions of the future light-duty vehicle fleet. These include uncertainties in the performance of future vehicles, fuels' emissions, availability of alternative fuels, demand, as well as market deployment of new technologies and fuels. This paper develops a methodology that quantifies the impact of uncertainty on the U.S. transport-related fuel use and emissions by introducing a stochastic technology and fleet assessment model that takes detailed technological and demand inputs.
Technical Paper

A Fourier Analysis Based Synthetic Method for In-cylinder Pressure Estimation

2006-10-16
2006-01-3425
The cylinder pressure signal, as an instantaneous and direct measure of the engine operation, contains valuable information for closed loop engine control and offers very useful engine monitoring and control capabilities. The estimation technique for cylinder pressure has been investigated for many years. Based on the Frequency Analysis Method, a synthetic estimation method is proposed in this paper to estimate pressure. Methods that are successful in obtaining a more accurate estimated cylinder pressure over a wider range of crankshaft angle are reported. Quantitative results obtained from application of the method are also given.
Technical Paper

A Hardware-in-the-loop Test Bench for Production Transmission Controls Software Quality Validation

2007-04-16
2007-01-0502
Production software validation is critical during software development, allowing potential quality issues that could occur in the field to be minimized. By developing automated and repeatable software test methods, test cases can be created to validate targeted areas of the control software for confirmation of the expected results from software release to release. This is especially important when algorithm/software development timing is aggressive and the management of development activities in a global work environment requires high quality, and timely test results. This paper presents a hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software. The powertrain model used within the HIL consists of an engine model and a detailed automatic transmission dynamics model. The model runs in an OPAL-RT TestDrive based HIL system.
Technical Paper

A Linear Catalyst Temperature Sensor for Exhaust Gas Ignition (EGI) and On Board Diagnostics of Misfire and Catalyst Efficiency

1993-03-01
930938
Afterburning of a rich exhaust/air mixture ahead of the catalyst has been shown in earlier papers to offer an effective means of achieving catalyst light-off in very short times. Protection of the catalyst from overheating is an important aspect of systems using EGI, and on board diagnostics will be required to check for proper function of EGI. In this paper, some options for these requirements are discussed, using a high temperature linear thermistor.
Technical Paper

A Mean-Value Model for Estimating Exhaust Manifold Pressure in Production Engine Applications

2008-04-14
2008-01-1004
A key quantity for use in engine control is the exhaust manifold pressure. For production applications it is an important component in the calculation of the engine volumetric efficiency, as well as EGR flow and residual fraction. For cost reasons, however, it is preferable to not have to measure the exhaust manifold pressure for production applications. For that reason, it is advantageous to develop a model for estimating the exhaust manifold pressure in production application software that is small, accurate, and simple to calibrate. In this paper, a mean-value model for calculating the exhaust manifold pressure is derived from the compressible flow equation, treating the exhaust system as a fixed-geometry restriction between the exhaust manifold and the outlet of the tailpipe. Validation data from production applications is presented.
Journal Article

A Method for Truck Underbody Aerodynamic Investigation

2016-09-16
2016-01-9020
The underbody of a truck is responsible for an appreciable portion of the vehicle’s aerodynamic drag, and thus its fuel consumption. A better understanding of the underbody aerodynamics could lead to designs that are more environmentally friendly. Unfortunately there are difficulties with correctly replicating the ground condition and rotating wheels when using the classical approach of a wind-tunnel for aerodynamic investigation. This in turn leads to computational modelling problems. A lack of experimental data for Computational Fluid Dynamics (CFD) validation means that the flow field in this area has seldom been investigated. There is thus very little information available for the optimisation and design of underbody aerodynamic devices. This paper investigates the use of a water-towing tank, which allows the establishment of the correct near-ground flow while permitting good optical access. Using a 1/10 scale model, Reynolds Numbers of around 0.7 million are achieved.
Technical Paper

A Methodology for Measurement and Analysis of Head-To- B-Pillar Contact Pressure and Area Response

2001-03-05
2001-01-0718
Government accident statistics show that approximately 35% of all car accident victims suffer an injury to the head and face. Such injuries are common during frontal, side, and rollover accidents as the head may impact the steering wheel, side pillars, windshield, or roof. Further, non-threatening injuries (i.e abrasions) may be suffered due to contact with the deployed airbag, or, in the case of an out-of-position occupant, a deploying airbag. While the forces and accelerations measured internal to the head are known to correlate with serious head injury (i.e. concussion, skull fracture, diffuse axonal injury), it is currently not possible to record how the loads are distributed over the head and face with the current ATD. Ultimately, such data could eventually be used to provide improved resolution as to the probability of superficial, soft tissue damage since past cadaver studies show that the distribution of contact pressures are related to such injuries.
Journal Article

A Miniature Catalytic Stripper for Particles Less Than 23 Nanometers

2013-04-08
2013-01-1570
The European Emissions Stage 5b standard for diesel passenger cars regulates particulate matter to 0.0045 g/km and non-volatile part/km greater than 23 nm size to 6.0x10₁₁ as determined by the PMP procedure that uses a heated evaporation tube to remove semi-volatile material. Measurement artifacts associated with the evaporation tube technique prevents reliable extension of the method to a lower size range. Catalytic stripper (CS) technology removes possible sources of these artifacts by effectively removing all hydrocarbons and sulfuric acid in the gas phase in order to avoid any chemical reactions or re-nucleation that may cause measurement complications. The performance of a miniature CS was evaluated and experimental results showed solid particle penetration was 50% at 10.5 nm. The sulfate storage capacity integrated into the CS enabled it to chemically remove sulfuric acid vapor rather than rely on dilution to prevent nucleation.
Journal Article

A New Approach for Very Low Particulate Mass Emissions Measurement

2013-04-08
2013-01-1557
Pending reductions in light duty vehicle PM emissions standards from 10 to 3 mg/mi and below will push the limits of the gravimetric measurement method. At these levels the PM mass collected approaches the mass of non-particle gaseous species that adsorb onto the filter from exhaust and ambient air. This introduces an intrinsic lower limit to filter based measurement that is independent of improvements achieved in weighing metrology. The statistical variability of back-up filter measurements at these levels makes them an ineffective means for correcting the adsorption artifact. The proposed subtraction of a facility based estimate of the artifact will partially alleviate the mass bias from adsorption, but its impact on weighing variability remains a problem that can reach a significant fraction of the upcoming 3 and future 1 mg/mi standards. This paper proposes an improved PM mass method that combines the gravimetric filter approach with real time aerosol measurement.
Technical Paper

A New Technique for Measuring HC Concentration in Real Time, in a Running Engine

1988-02-01
880517
Using a novel, high frequency response FID unit, hydrocarbon measurements in the spark plug gap of a firing gasoline engine have been made. These measurements have been correlated with the pressure development, and a significant correlation was found. The method described can be used on any engine fitted with a modified sparking plug.
Technical Paper

A New, High Torque Brake Design Using Sliding Discs

2003-10-19
2003-01-3309
This paper presents an alternative brake that uses two floating discs, with four rubbing surfaces, to provide a step change improvement in performance over existing products. The paper details the development of this product highlighting the test data, which demonstrates the significant improvements in specific torque, fluid consumption and cooling rates. The design retains conventional materials, existing processes and fits within current package constraints. The sliding discs, which compensate for wear, allow opportunities to simplify the caliper to a fixed design and allow integration with the steering knuckle. Performance, refinement and durability test results indicate the current status of the design as implemented on a small passenger car and an SUV, and show its compatibility with existing vehicle brake control systems. Design options to implement this technology within current and future vehicle systems are also described.
X