Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

2006 Chevrolet Corvette C6 Z06 Aerodynamic Development

2005-04-11
2005-01-1943
This paper is intended to give a general overview of the key aerodynamic developments for the 2006 Chevrolet Corvette C6 Z06. Significant computational and wind tunnel time were used to develop the 2006 Z06 to provide it with improved high speed stability, increased cooling capability and equivalent drag compared to the 2004 Chevrolet Corvette C5 Z06.
Technical Paper

A CAE Based Stochastic Assessment and Improvement of Vehicle NCAP Response

2004-03-08
2004-01-0458
One of the primary issues in the interpretation of vehicle impact response data, observed from vehicle crash test events, is coping with variability. This vehicle response inconsistency generally causes test results to be unpredictable and makes CAE test validation work difficult as well. This paper, considering the uncertain characteristics of vehicle impact events, has implemented a stochastic assessment of vehicle NCAP response variation through a CAE vehicle impact model, and it has accomplished the three primary study objectives as stated follows: 1) Identify the response variation causing factors stochastically from various structural and environmental factor candidates and quantify the degree of their influences on crash response, 2) Develop a methodology for interpreting the significance of the factor effects in conjunction with vehicle impact mechanics and physics, and 3) Implement a stochastic improvement of the vehicle NCAP responses and their repeatability
Technical Paper

A Comparison of Techniques to Forecast Consumer Satisfaction for Vehicle Ride

2007-04-16
2007-01-1537
This paper presents a comparison of methods for the identification of a reduced set of useful variables using a multidimensional system. The Mahalanobis-Taguchi System and a standard statistical technique are used reduce the dimensionality of vehicle ride based on consumer satisfaction ratings. The Mahalanobis-Taguchi System and cluster analysis are applied to vehicle ride. The research considers 67 vehicle data sets for the 6 vehicle ride parameters. This paper applies the Mahalanobis-Taguchi System to forecast consumer satisfaction and provides a comparison of results with those obtained from a standard statistical approach to the problem.
Technical Paper

A Computerized Optimization Method Of Engine Mounting System

2003-05-05
2003-01-1461
This paper presents a method for optimization design of an engine mounting system subjected to some constraints. The engine center of gravity, the mount stiffness rates, the mount locations and/or their orientations with respect to the vehicle can be chosen as design variables, but some of them are given in advance or have limitations because of the packaging constraints on the mount locations, as well as the individual mount rate ratio limitations imposed by manufacturability. A computer program, called DynaMount, has been developed that identifies the optimum design variables for the engine mounting system, including decoupling mode, natural frequency placement, etc.. The degree of decoupling achieved is quantified by kinetic energy distributions calculated for each of the modes. Several application examples are presented to illustrate the validity of this method and the computer program.
Technical Paper

A Downforce Optimization Study for a Racing Car Shape

2005-04-11
2005-01-0545
A new process is developed for the aerodynamic shape optimization of racing cars using Computational Fluid Dynamics (CFD). The process is based on using the mesh morphing techniques to create new designs for analysis by morphing the CFD mesh of the original design. The resulting improvements in the analysis turnaround time allow a quick exploration of the design parameters for determining the optimum aerodynamic design. The approach is used to perform a parametric study to optimize a racing car shape for maximum downforce. The analysis procedure used for the CFD analysis is tuned to ensure grid independence and accuracy of the predictions. The parametric study shows that the morpher-based process can quickly and precisely create designs for the CFD analysis. This process can become the foundation for the automated aerodynamic design optimization of the racing cars.
Technical Paper

A Dynamic Durability Analysis Method and Application to a Battery Support Subsystem

2004-03-08
2004-01-0874
The battery support in a small car is an example of a subsystem that lends itself to mounted component dynamic fatigue analysis, due to its weight and localized attachments. This paper describes a durability analysis method that was developed to define the required enforced motion, stress response, and fatigue life for such subsystems. The method combines the large mass method with the modal transient formulation to determine the dynamic stress responses. The large mass method was selected over others for its ease of use and efficiency when working with the modal formulation and known accelerations from a single driving point. In this example, these known accelerations were obtained from the drive files of a 4-DOF shake table that was used for corresponding lab tests of a rear compartment body structure. These drive files, originally displacements, were differentiated twice and filtered to produce prescribed accelerations to the finite element model.
Technical Paper

A Simulation Model for the Saturn VUE Green Line Hybrid Vehicle

2006-04-03
2006-01-0441
In developing the 2007 Model Year Saturn VUE Green Line hybrid vehicle, a vehicle model for prediction of fuel economy and performance was developed. This model was developed in Matlab / Simulink / Stateflow by augmenting an existing conventional vehicle model to include hybrid components and controls. The generic structure and the functionalities of the model are presented. This simulation model was used for rapid concept selection and requirements balancing early in the vehicle development process. Engine usage and energy distributions are shown based on simulation results. Fuel economy breakdown was also discussed.
Technical Paper

A Study on Vehicle Elastomer Mount Preloading and Impact Response with Test Validation

2005-04-11
2005-01-1415
A variety of elastomer mounts are being used for vehicles as isolators/dampers between body and frame, on the engine cradle, etc. These vehicle flexible mounts, made of mainly rubber materials and housed in a metallic tube, are indispensable components affecting the quality of the vehicle ride, noise and vibration. In the auto industry, the usual practice when designing vehicle flexible mounts is to minimally reflect impact considerations in the mount design features. However, in most high-speed vehicle crash events where the mounts fail, the crash responses, including occupant injury severity, are known to be very different from the responses of non-failure cases. Even in low-speed vehicle impact cases, excessive deformation of the flexible mounts could cause significant variance in the compliance of the vehicle acceleration level to the air-bag firing and timing threshold requirements.
Technical Paper

An Integrated Chassis Control for Vehicle-Trailer Stability and Handling Performance

2004-05-04
2004-01-2046
To cope with the conflict requirements between the stability and handling performance, and the high-order and complex vehicle-trailer plant, a model tracking method is proposed. With this approach, a feedback control is designed to “decouple” the vehicle and the trailer plant, such that each tracks a well-defined second-order reference model independently yet coordinately. A feedforward control is designed to maintain its system steady-state performance. As a result, the proposed approach not only improves the system transient responses, but also its steady-state performance. This approach further yields a simple yet analytical control derivation that provides more insight to the system dynamics.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Application of Hydraulic Body Mounts to Reduce the Freeway Hop Shake of Pickup Trucks

2009-05-19
2009-01-2126
When pickup trucks are driven on concrete paved freeways, freeway hop shake is a major complaint. Freeway hop shake occurs when the vehicle passes over the concrete joints of the freeway which impose in-phase harmonic road inputs. These road inputs excite vehicle modes that degrade ride comfort. The worst shake level occurs when the vehicle speed is such that the road input excites the vehicle 1st bending mode and/or the rear wheel hop mode. The hop and bending mode are very close in frequency. This phenomenon is called freeway hop shake. Automotive manufacturers are searching for ways to mitigate freeway hop shake. There are several ways to reduce the shake amplitude. This paper documents a new approach using hydraulic body mounts to reduce the shake. A full vehicle analytical model was used to determine the root cause of the freeway hop shake.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

Architecture for Robust Efficiency:GM's “Precept” PNGV Vehicle

2000-04-02
2000-01-1582
General Motors is developing a hybrid electric concept vehicle from its “Precept” high efficiency vehicle architecture, to satisfy requirements of the Partnership for a New Generation of Vehicles (PNGV) program. This Technology Demonstration Vehicle (TDV) features fundamental architecture that is unconventional compared to contemporary passenger car design, or even to other hybrid vehicles. This paper describes this unique architecture and how the vehicle's most significant features complement each other in harmonious design. It also notes how these features contribute to robustness of efficiency.
Technical Paper

Assessment of Closed-Wall Wind Tunnel Blockage using CFD

2004-03-08
2004-01-0672
Effects of the wind tunnel blockage in a closed-wall wind tunnel were investigated using computational fluid dynamics (CFD). Flow over three generic vehicle models representing a passenger sedan, a sports utility vehicle (SUV), and a pickup truck was solved. The models were placed in a baseline virtual wind tunnel as well as four additional virtual wind tunnels, each with different size cross-sections, providing different levels of wind tunnel blockage. For each vehicle model, the CFD analysis produced an aerodynamic drag coefficient for the vehicle at the blockage free condition as well as the blockage effect increment for the baseline wind tunnel. A CFD based blockage correction method is proposed. Comparisons of this method to some existing blockage correction methods for closed-wall wind tunnel are also presented.
Technical Paper

Automated Aerodynamic Design Optimization Process for Automotive Vehicle

2003-03-03
2003-01-0993
An automatic optimization process for the aerodynamic design of automotive vehicle shapes is presented. The Computational Fluid Dynamics (CFD) mesh generation and the analysis software packages are coupled for transfer of data and information between the two packages. This communication enables an automated process in which designs are created and analyzed for the aerodynamic drag. New designs are created by morphing the CFD model for the baseline design. The automated process is applied to perform a parametric study on a generic automobile sedan shape. The results show that the process can be used for aerodynamic optimization of any automotive vehicle shape. The turnaround for the automated process is at least an order of magnitude less than the conventional analysis process.
Technical Paper

Axiomatic Design for a Total Robust Development Process

2009-04-20
2009-01-0793
In this article, the authors illustrate the benefits of axiomatic design (AD) for robust optimization and how to integrate axiomatic design into a total robust design process. Similar to traditional robust design, the purpose of axiomatic design is to improve the probability of a design in meeting its functional targets at early concept generation stage. However, axiomatic design is not a standalone method or tool and it needs to be integrated with other tools to be effective in a total robust development process. A total robust development process includes: system design, parameter design, tolerance design, and tolerance specifications [1]. The authors developed a step-by-step procedure for axiomatic design practices in industrial applications for consistent and efficient deliverables. The authors also integrated axiomatic design with the CAD/CAE/statistical/visualization tools and methods to enhance the efficiency of a total robust development process.
Technical Paper

Brake Squeal Reduction Using Robust Design

2003-03-03
2003-01-0879
This paper discusses a standard procedure to reduce brake squeal using CAE and robust synthesis & analysis techniques. There are several techniques available to evaluate the stability of a system. Complex eigenvalue analysis is used for predicting and reducing squeal propensity. The complex eigenvalue method was implemented using SOL110 in version 2001 of MSC/NSTRAN for this study. We applied the signal to noise ratio using an orthogonal matrix to evaluate the main parameter effects and minimize the sensitivity.
Technical Paper

Brake and Cruise System Integration using Robust Engineering

2003-03-03
2003-01-1095
This paper presents a project that was done to solve an integration problem between a brake system and a cruise control system on a GM vehicle program, each of which was supplied by a different supplier. This paper presents how the problem was resolved using a CAE tool which was a combination of formulated MS/Excel spreadsheet, Overdrive (GM internal code), and iSIGHT of Engineous Software Inc, which is a process integrator and process automator. A sensitivity study of system reliability was conducted using iSIGHT. The most sensitive factor was found through the sensitivity study. Thereafter, a Robust design was obtained. The recommended Robust Design was implemented in the vehicle program, which led to a substantial cost saving. The CAE software tool (the combination) developed through the problem solving process will be used to ensure quality of brake and cruise system performance for future vehicle programs.
Technical Paper

CAE Fatigue Prediction of Fuel Tank Straps using Proving Ground Loads

2005-04-11
2005-01-1405
The durability of fuel tank straps is essential for vehicle safety. Extensive physical tests are conducted to verify designs for durability. Due to the complexity of the loads and the fuel-to-tank interaction, computer-aided-engineering (CAE) simulation has had limited application in this area. This paper presents a CAE method for fuel tank strap durability prediction. It discusses the analytical loads, modeling of fuel-to-tank interaction, dynamic analysis methods, and fatigue analysis methods. Analysis results are compared to physical test results. This method can be used in either a fuel-tank-system model or a full vehicle model. It can give directional design guidance for fuel tank strap durability in the early stages of product development to reduce vehicle development costs.
X