Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Mid-Range Data Acquisition Units UsingGPS and Accelerometers

2018-04-03
2018-01-0513
In the 2016 SAE publication “Data Acquisition using Smart Phone Applications,” Neale et al., evaluated the accuracy of basic fitness applications in tracking position and elevation using the GPS and accelerometer technology contained within the smart phone itself [1]. This paper further develops the research by evaluating mid-level applications. Mid-level applications are defined as ones that use a phone’s internal accelerometer and record data at 1 Hz or greater. The application can also utilize add-on devices, such as a Bluetooth enabled GPS antenna, which reports at a higher sample rate (10 Hz) than the phone by itself. These mid-level applications are still relatively easy to use, lightweight and affordable [2], [3], [4], but have the potential for higher data sample rates for the accelerometer (due to the software) and GPS signal (due to the hardware). In this paper, Harry’s Lap Timer™ was evaluated as a smart phone mid-level application.
Technical Paper

Motorcycle Headlamp Distribution Comparison

2018-04-03
2018-01-1037
The forward lighting systems on a motorcycle differ from the forward lighting systems on passenger cars, trucks, and tractor trailer. Many motorcycles, for instance, have only a single headlamp. For motorcycles that have more than one headlamp, the total width between the headlamps is still significantly less than the width of an automobile, an important component in the detection of a vehicle at night, as well as a factor in the efficacy of the beam pattern to help a driver see ahead. Single headlamp configurations are centered on the vehicle, and provide little assistance in marking the outside boundaries like a passenger car or truck headlamps can. Further, because of the dynamics of a motorcycle, the performance of the headlamp will differ around turns or corners, since the motorcycle must lean in order to negotiate a turn. As a result, the beam pattern, and hence visibility, provided by the headlamps on a motorcycle are unique for motorized vehicles.
Journal Article

Pedestrian Impact Analysis of Side-Swipe and Minor Overlap Conditions

2021-04-06
2021-01-0881
This paper presents analyses of 21real-world pedestrian versus vehicle collisions that were video recorded from vehicle dash mounted cameras or surveillance cameras. These pedestrian collisions have in common an impact configuration where the pedestrian was at the side of the vehicle, or with a minimal overlap at the front corner of the vehicle (less than one foot overlap). These impacts would not be considered frontal impacts [1], and as a result determining the speed of the vehicle by existing methods that incorporate the pedestrian travel distance post impact, or by assessing vehicle damage, would not be applicable. This research examined the specific interaction of non-frontal, side-impact, and minimal overlap pedestrian impact configurations to assess the relationship between the speed of the vehicle at impact, the motion of the pedestrian before and after impact, and the associated post impact travel distances.
Technical Paper

Video Based Simulation of Daytime and Nighttime Rain Affecting Driver Visibility

2021-04-06
2021-01-0854
This paper presents a methodology for generating video realistic computer simulated rain, and the effect rain has on driver visibility. Rain was considered under three different rain rates, light, moderate and heavy, and in nighttime and daytime conditions. The techniques and methodologies presented in this publication rely on techniques of video tracking and projection mapping that have been previous published. Neale et al. [2004, 2016], showed how processes of video tracking can convert two-dimensional image data from video images into three-dimensional scaled computer-generated environments. Further, Neale et al. [2013,2016] demonstrated that video projection mapping, when combined with video tracking, enables the production of video realistic simulated environments, where videographic and photographic baseline footage is combined with three-dimensional computer geometry.
Technical Paper

Video Projection Mapping Photogrammetry through Video Tracking

2013-04-08
2013-01-0788
This paper examines a method for generating a scaled three-dimensional computer model of an accident scene from video footage. This method, which combines the previously published methods of video tracking and camera projection, includes automated mapping of physical evidence through rectification of each frame. Video Tracking is a photogrammetric technique for obtaining three-dimensional data from a scene using video and was described in a 2004 publication titled, “A Video Tracking Photogrammetry Technique to Survey Roadways for Accident Reconstruction” (SAE 2004-01-1221).
Technical Paper

Visualization of Driver and Pedestrian Visibility in Virtual Reality Environments

2021-04-06
2021-01-0856
In 2016, Virtual Reality (VR) equipment entered the mainstream scientific, medical, and entertainment industries. It became both affordable and available to the public market in the form of some of the technologies earliest successful headset: the Oculus Rift™ and HTC Vive™. While new equipment continues to emerge, at the time these headsets came equipped with a 100° field of view screen that allows a viewer a seamless 360° environment to experience that is non-linear in the sense that the viewer can chose where they look and for how long. The fundamental differences, however, between the conventional form of visualizations like computer animations and graphics and VR are subtle. A VR environment can be understood as a series of two-dimensional images, stitched together to be a seamless single 360° image. In this respect, it is only the number of images the viewer sees at one time that separates a conventional visualization from a VR experience.
X