Refine Your Search

Topic

Search Results

Technical Paper

A Study on Efficiency and Emission Enhancements in a 4-Stroke Natural Gas Lean Burn Engine

1996-02-01
960849
Experiments were performed with a 4-stroke, natural gas fueled SI engine to investigate the effects of several parameters on engine performance under lean operating condition. A favorable effect of charge swirl on stable lean burn operation was observed at a conventional compression ratio. There was an optimum EGR rate which gave a substantial reduction in NOx emissions with minor penalties in efficiency and UHC emissions. Marginal improvement was noticed with lean operations in a long spark duration ignition system. The flame jet ignition system displayed noticeable capability in extending the lean limit. In addition, shadowgraph visualization tests were performed for combustion diagnostic purposes.
Technical Paper

Application of a Wide Range Oxygen Sensor for the Misfire Detection

1999-05-03
1999-01-1485
A new concept of misfire detection in spark ignition engines using a wide-range oxygen sensor is introduced. A wide-range oxygen sensor, installed at the confluence point of the exhaust manifold, was adopted to measure the variation in oxygen concentration in case of a misfire. The signals of the wide-range oxygen sensor were characterized over the various engine-operating conditions in order to decide the monitoring parameters for the detection of the misfire and the corresponding faulty cylinder. The effect of the sensor position, the transient response characteristics of the sensor and the cyclic variation in the signal fluctuation were also investigated. Limited response time of a commercially available sensor barely allowed to observe misfire. It was found that a misfiring could be distinguished more clearly from normal combustion through the differentiation of the sensor response signal. The differentiated signal has twin peaks for a single misfiring in a cylinder.
Technical Paper

Collapse Analysis of Space-Framed Vehicle Models by Finite Element Limit Analysis

1998-02-23
980549
The present analysis concerns collapse behavior of vehicles under the quasi-static loading condition as analysis for the initial stage of conceptual design. Collapse analysis of a vehicle model with the space-framed structure is carried out using finite element limit analysis. To improve collapse response and strengthen weak parts, the dimension of the section and the position of the frame are locally changed as design parameters. The results demonstrates that the present analysis can easily predict weak parts of the structure and the change of design parameters enhances the load-carrying capacity of vehicle structures and reduces the deflection toward the passenger compartment.
Technical Paper

Detailed Characterization of Morphology and Dimensions of Diesel Particulates via Thermophoretic Sampling

2001-09-24
2001-01-3572
A thermophoretic particulate sampling device was used to investigate the detailed morphology and microstructure of diesel particulates at various engine-operating conditions. A 75 HP Caterpillar single-cylinder direct-injection diesel engine was operated to sample particulate matter from the high-temperature exhaust stream. The morphology and microstructure of the collected diesel particulates were analyzed using a high-resolution transmission electron microscope and subsequent image processing/data acquisition system. The analysis revealed that spherical primary particles were agglomerated together to form large aggregate clusters for most of engine speed and load conditions. Measured primary particle sizes ranged from 34.4 to 28.5 nm at various engine-operating conditions. The smaller primary particles observed at high engine-operating conditions were believed to be caused by particle oxidation at the high combustion temperature.
Technical Paper

Determination of Seat Sponge Properties with Estimated Biodynamic Model

2000-03-06
2000-01-0640
This paper deals with the determination of the seat sponge parameters by using the estimated nine degree-of-freedom biodynamic model. The suggested nine DOF model has multiple outputs that include the major axes for evaluating the ride quality in vehicles such as z-axis of the floor, hip, and x-axis of the back, in addition to the z-axis of the head for describing the whole-body vibration. It is intended to resemble the sitting posture with backrest support. Three experiments were executed to validate the proposed models. The first one was to measure the acceleration of the floor and hip in z-axis, the back in x-axis, and the head in z-axis under exciter. From this measurement, the transmissibilities of each subject were obtained. The second one was the measurement of the joint position by the device having pointer, and contact point between human body and seat by pressure sensor. The third one was the dropping test to measure the seat and back cushion.
Technical Paper

Development of traction control system

2000-06-12
2000-05-0246
Two major roles of the traction control system (TCS) are to guarantee the acceleration performance and directional stability. This paper proposes a new slip controller which uses the brake and the throttle actuator simultaneously. To avoid measurement problems and get a simple structure, the brake controller is designed using Lyapunov redesign method and the throttle controller is designed using multiple sliding mode control. Through the hybrid use of brake and throttle controllers, the vehicle is insensitive to the variation of the vehicle mass, brake gain and road condition and can achieve required acceleration performance. For the directional stability, a new method to measure the mixture of yaw rate and lateral acceleration with the speed difference of non-driven wheels is proposed. Using this measurement, the controller imposes individual pressure to the driven wheels and can maintain stability in the cornering or the lane change on the slippery road.
Technical Paper

Diesel Spray Development of VCO Nozzles for High Pressure Direct-Injection

2000-03-06
2000-01-1254
Spray characteristics of diesel fuel injection is one of the most important factors in diesel combustion and pollutant emissions especially in HSDI (High Speed Direct Injection) diesel engines where the interval between the evaporation of atomized fuel and the onset of combustion is relatively short. An investigation into various spray characteristics from different holes of VCO nozzles was performed and its results were compared to standard sac nozzle. The global characteristics of spray, including spray angle, spray tip penetration, and spray pattern were measured from the spray images which were frozen by an instantaneous photography with a spark light source. For better understanding of spray behavior, SMD of the fuel sprays from each hole in the multi hole nozzles were measured with back light imaging while the sprays from the other holes were covered by a purpose-built nozzle cap.
Technical Paper

Dimethyl Ether (DME) Spray Characteristics Compared to Diesel in a Common-Rail Fuel Injection System

2002-10-21
2002-01-2898
Dimethyl Ether (DME) has been considered as one of the most attractive alternative fuels for compression ignition engine. Its main advantage in compression-ignition engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the intrinsic properties of the DME. Experimental study of the DME and conventional diesel spray employing a common-rail type fuel injection system with a sac type injector was performed in a constant volume vessel pressurized by nitrogen gas. A CCD camera was employed to capture time series of spray images, so that spray cone angles and penetrations of the DME spray were characterized and compared with those of diesel. Intermittent hesitating DME spray appeared at injection pressures of 25MPa and 40MPa in both atmospheric and 3MPa chamber pressures.
Technical Paper

Dynamic Ride Quality Investigation and DB of Ride Values for Passenger and RV Cars

2001-03-05
2001-01-0384
The ride values of seven cars(six passenger car and one RV car) are evaluated for 4 subjects based on the vibration of the bodies. And the seat qualities are investigated with the SEAT(seat effective amplitude transmissibility) value. The evaluated values are arranged as DB in html files. Since one of the most important parameters for ride comfort is the level and duration of the root mean square acceleration experienced, the acceleration responses of subjects are measured at 8 points on their bodies(3 Translational axes on the seat surface, 3 translational axes at the feet and 2 axes(x,z) at the backrest) when the subjects are excited by driving a vehicle on the road. The ride values such as the overall ride value, the component ride values and the seat effective amplitude transmissibility based on acceleration root mean square are evaluated for different seven vehicles using frequency weighting functions and axis multiplying factors.
Technical Paper

Dynamic Ride Quality Investigation for Passenger Car

1998-02-23
980660
The ride values of passenger cars are investigated for Korean subjects based on the vibration of the human bodies. When three subjects are excited by driving a vehicle on road, their responses of acceleration are measured at 12 points on their bodies according to Griffin's 12 axis system (3 translational axes on a seat surface, 3 rotational axes on a seat surface, 3 translational axes at the seat back and the 3 translational axes at the feet). Since one of the most important parameters for ride comfort is the level and duration of the root mean square acceleration experienced, the ride values, such as the seat effective amplitude transmissibility, the component ride value, and the overall ride value based on acceleration root mean square are evaluated for different four vehicles using frequency weighing functions and axis multiplying factors. The ride indices are also studied considering to the seat dynamic characteristics with subjects.
Technical Paper

Effect of Design Parameters on the Performance of Finned Exhaust Heat Exchanger

2003-10-27
2003-01-3076
This paper describes the results of a DOE (design of experiment) applied to an exhaust heat exchanger to lower the exhaust gas temperature mainly under high load conditions. The heat exchanger was installed between the exhaust manifold and the inlet of the close-coupled catalytic converter (CCC) to avoid thermal aging. The DOE evaluates the influence of the selected eight design parameters of the heat exchanger geometry on the performance of the exhaust gas cooling system, and the interaction between these parameters. To maximize the heat transfer between exhaust gas and coolant, fins were implemented at the inner surface of the heat exchanger. The design parameters consist of the fin geometry (length, thickness, arrangement, number of fin), coolant direction, exchanger wall thickness, and the length of the heat exchanger. The acceptable range of each design parameter is discussed by analyzing the DOE results.
Technical Paper

Effect of Nozzle Geometry on the Common-Rail Diesel Spray

2002-05-06
2002-01-1625
Diesel injections with various nozzle geometries were tested to investigate the spray characteristics by optical imaging techniques. Sac-nozzle and VCO nozzle with single guided needle coupled with rotary-type mechanical pump were compared in terms of macroscopic spray development and microscopic behavior. These nozzles incorporated with common-rail system were tested to see the effect of high pressure injection. Detailed investigation into spray characteristics from the holes of VCO nozzles, mostly with double guided needle, was performed. A variety of injection hole geometries were tested and compared to give tips on better injector design. Different hole sizes and taper ratio, represented as K factor, were studied through comprehensive spray imaging techniques. Global characteristics of a diesel spray, such as spray penetration, spray angle and its pattern, were observed from macroscopic images.
Technical Paper

Effects of EGR and DME Injection Strategy in Hydrogen-DME Compression Ignition Engine

2011-08-30
2011-01-1790
The compression ignition combustion fuelled with hydrogen and dimethyl-ether was investigated. Exhaust gas recirculation was applied to reduce noise and nitrogen oxide (NOx) emission. When dimethyl-ether was injected earlier, combustion showed two-stage ignitions known as low temperature reaction and high temperature reaction. With advanced dimethyl-ether injection, combustion temperature and in-cylinder pressure rise were lowered which resulted in high carbon monoxide and hydrocarbon emissions. However, NOx emission was decreased due to relatively low combustion temperature. The engine combustion showed only high temperature reaction when dimethyl-ether was injected near top dead center. When exhaust gas recirculation gas was added, the in-cylinder pressure and heat release rate were decreased. However, it retarded combustion phase resulting in higher indicated mean effective pressure.
Technical Paper

Effects of Engine Operating Conditions on Catalytic Converter Temperature in an SI Engine

2002-05-06
2002-01-1677
To meet stringent emission standards, a considerable amount of development work is necessary to ensure suitable efficiency and durability of catalyst systems. The main challenge is to reduce the engine cold-start emissions. Close-coupled catalyst (CCC) provides fast light-off time by utilizing the energy in the exhaust gas. However, if some malfunction occurred during engine operation and the catalyst temperature exceeds 1050°C, the catalytic converter becomes deactivated and shows poor conversion efficiency. Close-coupled catalyst temperature was investigated under various engine operating conditions. All of the experiments were conducted with a 1.0L SI engine at 1500-4000 rpm. The engine was operated at no load to full load conditions. Exhaust gas temperature and catalyst temperature were measured as a function of lambda value (0.8-1.2), ignition timing (BTDC 30°-ATDC 30°) and misfire rates (0-28%).
Technical Paper

Effects of Hydrogen Ratio and EGR on Combustion and Emissions in a Hydrogen/Diesel Dual-Fuel PCCI Engine

2015-09-01
2015-01-1815
The effects of hydrogen ratio and exhaust gas recirculation (EGR) on combustion and emissions in a hydrogen/diesel dual-fuel premixed charge compression ignition (PCCI) engine were investigated. The control of combustion phasing could be improved using hydrogen enrichment and EGR due to the retarded combustion phasing with a higher hydrogen ratio. The indicated mean effective pressure (IMEP) was increased with a higher hydrogen ratio because the hydrogen enrichment intensified the high temperature reactions and thus decreased the combustion duration. Hydrocarbon (HC) and carbon monoxide (CO) emissions were reduced significantly in a hydrogen/diesel dual-fuel PCCI mode with a similar NOx emissions level as that of the diesel PCCI mode.
Technical Paper

Engine Controller for the Hydrocarbon Reduction During Cold Start in SI Engine

2002-05-06
2002-01-1666
In order to reduce hydrocarbon emission in gasoline engine, especially during warming-up period, it is necessary to estimate the fuel and fuel product flow rate in the emission gas. The intake airflow rate should also be estimated. A strategy was proposed to estimate air fuel ratio in a spark ignition engine. The mass of air in the cylinder was determined by filling-emptying method, and the fuel in the intake manifold and cylinder was estimated by the “wall-wetting” effect calculation. The use of graphical dynamic system control software is becoming more popular as automotive engineers strive to reduce the time to develop new control systems. The rapid prototype engine controller has been developed by using MATLAB, SIMULINK, REAL TIME WORKSHOP, xPC Target, and WATCOM C++. The sensor data from the engine will be transferred to computer, and the fuel delivery will be calculated.
Technical Paper

Estimation of Air Fuel Ratio of a SI Engine from Exhaust Gas Temperature at Cold Start Condition

2002-05-06
2002-01-1667
Wall wetting of injected fuel onto the intake manifold and cylinder wall causes unpredictable transient behavior of air-fuel mixing which results in a significant emission of unburned hydrocarbon (HC) emission during cold start operation. Heated exhaust gas oxygen (HEGO) sensors cannot measure the air-fuel ratio (A/F) of exhaust gas during cold start condition. Precise and fast estimation of air/fuel ratio of the exhaust gas is required to elucidate the wall wetting phenomena and subsequent HC formation. Refined A/F estimation can enable the control of fuel injection minimizing HC emissions during cold start conditions so that HC emissions can be minimized. A new estimator for A/F of the exhaust gas has been developed. The A/F estimator described in this study utilizes measured exhaust gas temperature and general engine parameters such as engine speed, airflow, coolant temperature, etc.
Technical Paper

Experimental Characterization of DI Gasoline Injection Processes

2015-09-01
2015-01-1894
This work investigates the injection processes of an eight-hole direct-injection gasoline injector from the Engine Combustion Network (ECN) effort on gasoline sprays (Spray G). Experiments are performed at identical operating conditions by multiple institutions using standardized procedures to provide high-quality target datasets for CFD spray modeling improvement. The initial conditions set by the ECN gasoline spray community (Spray G: Ambient temperature: 573 K, ambient density: 3.5 kg/m3 (∼6 bar), fuel: iso-octane, and injection pressure: 200 bar) are examined along with additional conditions to extend the dataset covering a broader operating range. Two institutes evaluated the liquid and vapor penetration characteristics of a particular 8-hole, 80° full-angle, Spray G injector (injector #28) using Mie scattering (liquid) and schlieren (vapor).
Technical Paper

Flame Propagation Characteristics in a Heavy Duty LPG Engine with Liquid Phase Port Injection

2002-05-06
2002-01-1736
Combustion and flame propagation characteristics of the liquid phase LPG injection (LPLI) engine were investigated in a single cylinder optical engine. Lean burn operation is needed to reduce thermal stress of exhaust manifold and engine knock in a heavy duty LPG engine. An LPLI system has advantages on lean operation. Optimized engine design parameters such as swirl, injection timing and piston geometry can improve lean burn performance with LPLI system. In this study, the effects of piston geometry along with injection timing and swirl ratio on flame propagation characteristics were investigated. A series of bottom-view flame images were taken from direct visualization using a UV intensified high-speed CCD camera. Concepts of flame area speed, in addition to flame propagation patterns and thermodynamic heat release analysis, was introduced to analyze the flame propagation characteristics.
Technical Paper

Fuel Stratification in a Liquid-Phase LPG Injection Engine

2003-05-19
2003-01-1777
To investigate the mixture distributions in an LPG engine with Liquid phase port injection for heavy duty vehicles, an optical single cylinder engine, which is optically accessible both in side and bottom view, and laser diagnostic system were incorporated to apply PLIF (planar laser induced fluorescence) technique. Acetone was used as a dopant in LPG fuel, which was excited by KrF excimer laser (248nm), and its fluorescence images were acquired with ICCD camera. The effects of fuel injection timing, swirl intensity and excess air ratio were investigated. For the case of open valve injection, favorable stratification of fuel, both in axial and radial direction, was clearly observed compared to the closed valve injection, where reverse stratification in axial direction was observed. At the Ricardo swirl ratio of 3.4, it was apparent that excessive axial stratification of fuel got dominant, which would lead to poor engine performances.
X