Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2D Mapping and Quantification of the In-Cylinder Air/Fuel-Ratio in a GDI Engine by Means of LIF and Comparison to Simultaneous Results from 1D Raman Measurements

2001-05-07
2001-01-1977
The optimization of the vaporization and mixture formation process is of great importance for the development of modern gasoline direct injection (GDI) engines, because it influences the subsequent processes of the ignition, combustion and pollutant formation significantly. In consequence, the subject of this work was the development of a measurement technique based on the laser induced exciplex fluorescence (LIF), which allows the two dimensional visualization and quantification of the in-cylinder air/fuel ratio. A tracer concept consisting of benzene and triethylamine dissolved in a non-fluorescent base fuel has been used. The calibration of the equivalence ratio proportional LIF-signal was performed directly inside the engine, at a well known mixture composition, immediately before the direct injection measurements were started.
Technical Paper

A CAE Optimization Process for Vehicle High Frequency NVH Applications

2005-05-16
2005-01-2422
A CAE SEA-based optimization process for the enhancement of vehicle high frequency NVH applications is developed and validated. The CAE simulation, based on statistical energy analysis (SEA) theory [1], has been used to analyze high frequency NVH responses for the vehicle sound package development. However, engineers have always faced two challenges during the vehicle SEA model development. One is to create a reliable SEA model, which is correlated well with hardware test data. The other is to have a systematic approach by using the correlated model to design effective and cost efficient sound package to improve vehicle interior quietness. The optimization process presented in this paper, which integrates analysis, design sensitivity, and optimization solver, has been developed to address the challenges and to serve the needs. A non-correlated Sport Utility Vehicle (SUV) and a correlated midsize car models were used to demonstrate the capability of the proposed optimization process.
Technical Paper

A CAE Study on Side Doors Inner Panel Deflection under Glass Stall Up Forces

2017-11-07
2017-36-0205
Not only well-functioning, but also the way operating everyday items "feel", gauges costumer perception of an automobile robustness. To prevent costumer dissatisfaction with door trim panel movement when operating power windows, deflections must be kept small. Deflections of inner panel are seen through trim panel and are responsible for giving a flimsy idea of the door. In this paper, inner panel movement for a fully stamped door in full glass stall up position is analyzed. Through CAE analyses, inner panel behavior was compared, considering different types of reinforcement for belt region.
Technical Paper

A CFD Validation Study for Automotive Aerodynamics

2000-03-06
2000-01-0129
A study was conducted using Ford's nine standard CFD calibration models as described in SAE paper 940323. The models are identical from the B-pillar forward but have different back end configurations. These models were created for the purpose of evaluating the effect of back end geometry variations on aerodynamic lift and drag. Detailed experimental data is available for each model in the form of surface pressure data, surface flow visualization, and wake flow field measurements in addition to aerodynamic lift and drag values. This data is extremely useful in analyzing the accuracy of the numerical simulations. The objective of this study was to determine the capability of a digital physics based commercial CFD code, PowerFLOW ® to accurately simulate the physics of the flow field around the car-like benchmark shapes.
Technical Paper

A Comprehensive Study of Door Slam

2004-03-08
2004-01-0161
As part of an ongoing technical collaboration between Ford and Rouge Steel Company, a comprehensive study of door slam event was undertaken. The experimental phase of the project involved measurements of accelerations at eight locations on the outer panel and strains on six locations of the inner panel. Although slam tests were conducted with window up and window down, results of only one test is presented in this paper. The CAE phase of the project involved the development of suitable “math” model of the door assembly and analysis methodology to capture the dynamics of the event. The predictability of the CAE method is examined through detailed comparison of accelerations and strains. While excellent agreement between CAE and test results of accelerations on the outer panel is obtained, the analysis predicts higher strains on the inner panel than the test. In addition, the tendency of outer panel to elastically buckle is examined.
Technical Paper

A Crack Detection Method for Self-Piercing Riveting Button Images through Machine Learning

2020-04-14
2020-01-0221
Self-piercing rivet (SPR) joints are a key joining technology for lightweight materials, and they have been widely used in automobile manufacturing. Manual visual crack inspection of SPR joints could be time-consuming and relies on high-level training for engineers to distinguish features subjectively. This paper presents a novel machine learning-based crack detection method for SPR joint button images. Firstly, sub-images are cropped from the button images and preprocessed into three categories (i.e., cracks, edges and smooth regions) as training samples. Then, the Artificial Neural Network (ANN) is chosen as the classification algorithm for sub-images. In the training of ANN, three pattern descriptors are proposed as feature extractors of sub-images, and compared with validation samples. Lastly, a search algorithm is developed to extend the application of the learned model from sub-images into the original button images.
Technical Paper

A Development Procedure to Improve the Acoustical Performance of a Dash System

2005-05-16
2005-01-2515
This paper discusses a development procedure that was used to evaluate the acoustical performance of one type of dashpanel construction over another type for a given application. Two very different constructions of dashpanels, one made out of plain steel and one made out of laminated steel, were studied under a series of different test conditions to understand which one performs better, and then to evaluate how to improve the overall performance of the inferior dashpanel for a given application. The poorly performing dashpanel was extensively tested with dashmat and different passthroughs to understand the acoustic strength of different passthroughs, to understand how passthroughs affect the overall performance of the dash system, and subsequently to understand how the performance can be improved by improving one of the passthroughs.
Technical Paper

A Drum Brake Squeal Analysis in the Time Domain

2005-05-16
2005-01-2312
Brake squeal has been a chronic customer complaint, often appearing high on the list of items that reduce customers' satisfaction with their vehicles. Brake squeal can emanate from either a drum brake or a disc brake even though the geometry of the two systems is significantly different. A drum brake generates friction within a cylindrical drum interacting with two semi-circular linings. A disc brake consists of a flat disc and two flat pads. The observed squeal behavior in a vehicle differs somewhat between drum and disc brakes. A drum brake may have a loud noise coming from three or more squeal frequencies, whereas a disc brake typically has one or two major squeal frequencies making up the noise. A good understanding of the operational deflection shapes of the brake components during noise events will definitely aid in design to reduce squeal occurrences and improve product quality.
Technical Paper

A Method of Evaluating the Joint Effectiveness on Contribution to Global Stiffness and NVH Performance of Vehicles

2017-03-28
2017-01-0376
While Advanced High Strength Steels (AHSS) and the next generation AHSS grades offer improved crash safety and reduced weight for vehicles, the global stiffness and NVH performance are often compromised due to reduced material thickness. This paper discusses an advanced method of evaluating the joint effectiveness on contribution to global stiffness and NVH performance of vehicles. A stiffness contribution ratio is proposed initiatively in this research, which evaluates the current contribution of the joints to the global stiffness and NVH performance of vehicles. Another parameter, joint effectiveness factor, has been used to study the potential of each joint on enhancing the global stiffness. The critical joints to enhance the vehicle stiffness and NVH performance can be identified based on above two parameters, and design changes be made to those critical joints to improve the vehicle performance.
Technical Paper

A Methodology of Real-World Fuel Consumption Estimation: Part 1. Drive Cycles

2018-04-03
2018-01-0644
To assess the fuel consumption of vehicles, three sets of input data are required; drive cycles, vehicle parameters, and environmental conditions. As the first part of a series of studies on real-world fuel consumption, this study focuses on the drive cycles. In principle, drive cycles should represent real-world usage. Some of them aim at a specific usage such as a city driving condition or an aggressive driving style. However, the definition of city or aggressive driving is very subjective and difficult to quantitatively correlate with the real-world usage. This study proposes a methodology to quantify the speed and dynamics of drive cycles, or vehicle speed traces in general, against the real-world usage. After reviewing parameter sets found in other studies, relative cubic speed (RCS) and positive kinetic energy (PKE) are selected to represent the speed and dynamics through energy flow balance at the wheels.
Technical Paper

A New Experimental Methodology to Estimate Chassis Force Transmissibility and Applications to Road NVH Improvement

2003-05-05
2003-01-1711
The performance of structure-borne road NVH can be cascaded down to three major systems: 1) vehicle body structure, 2) chassis/suspension, 3) tire/wheel. The forces at the body attachment points are controlled by the isolation efficiency of the chassis/suspension system and the excitation at the spindle/knuckle due to the tire/road interaction. The chassis force transmissibility is a metric to quantify the isolation efficiency. This paper presents a new experimental methodology to estimate the chassis force transmissibility from a fully assembled vehicle. For the calculation of the transmissibility, the spindle force/moment estimation and the conventional Noise Path Analysis (NPA) methodologies are utilized. A merit of the methodology provides not only spindle force to body force transmissibility but also spindle moment to body force transmissibility. Hence it enables us to understand the effectiveness of the spindle moments on the body forces.
Technical Paper

A New Experimental Methodology to Estimate Tire/Wheel Blocked Force for Road NVH Application

2005-05-16
2005-01-2260
Past studies have shown that NVH CAE tire model quality is not adequate to correctly capture a mid-frequency range (100-300 Hz). A new methodology has been developed to estimate tire forces that are independent of dynamic characteristics of vehicle suspension and rig test fixture. The forces are called tire blocked forces and defined as a force generated by a tire/wheel system whose boundary condition is constrained. The tire blocked force is estimated by removing the dynamic effect of the tire force measurement fixture. The blocked forces can be applied to CAE models to predict vehicle road NVH responses. This new method can also be used as a target setting tool. Tire suppliers can check the blocked tire forces from the rig testing data against a force target before they submit tires to automotive manufacturers for evaluations on a prototype vehicle.
Technical Paper

A New Method for the Investigation of Unburned Oil Emissions in the Raw Exhaust of SI Engines

1998-10-19
982438
The study of oil emission is of essential interest for the engine development of modern cars, as well as for the understanding of hydrocarbon emissions especially during cold start conditions. A laser mass spectrometer has been used to measure single aromatic hydrocarbons in unconditioned exhaust gas of a H2-fueled engine at stationary and transient motor operation. These compounds represent unburned oil constituents. The measurements were accompanied by FID and GC-FID measurements of hydrocarbons which represent the burned oil constituents. The total oil consumption has been determined by measuring the oil sampled by freezing and weighing. It has been concluded that only 10 % of the oil consumption via exhaust gas has burned in the cylinders. A correlation of the emission of single oil-based components at ppb level detected with the laser mass spectrometer to the total motor oil emission has been found.
Technical Paper

A New Wavelet Technique for Transient Sound Visualization and Application to Automotive Door Closing Events

1999-05-17
1999-01-1682
Transient automotive sounds often possess a complex internal structure resulting from one or more impacts combined with mechanical and acoustic cavity resonances. This structure can be revealed by a new technique for obtaining translation-invariant scalograms from orthogonal discrete wavelet transforms. These scalograms are particularly well suited to the visualization of complex sound transients which span a wide dynamic range in time (ms to s) and frequency (∼100Hz to ∼10kHz). As examples, scalograms and spectrograms of door latch closing events from a variety of automotive platforms are discussed and compared in light of the subjective rankings of the sounds.
Technical Paper

A Parametric Approach for Vehicle Frame Structure Dynamics Analysis

2007-05-15
2007-01-2335
The capability to drive NVH quality into vehicle frame design is often compromised by the lack of available predictive tools that can be developed and applied within the timeframe during which key architectural design decisions are required. To address this need, a new parametric frame modeling approach was developed and is presented in this paper. This fully parameterized model is capable of fast modal, static stiffness & weight assessments, as well as DSA/optimization for frame design changes. This tool has been proven to be effective in improving speed, quality and impact of NVH hardware decisions.
Technical Paper

A Plastic Appliqué's Strain Field Determination by Experimental Shearographic Analyses Under an Applied Thermal Load

2005-05-10
2005-01-2066
The objective of this paper is to develop a test capable of ranking lift-gates based on strain concentration levels reflected in fringe characteristics in the known stress/strain concentration and fracture vicinity. First, the system (lift gate glass, adhesive and appliqué) is chosen as test sample since the subsystem (local appliqué) does not exhibit the failure mode observed in the field test. Subsequently, it has been identified that the thermal component (rather than mechanical) is the predominant load by laser scanning vibrometry and confirmed via field test data. Next, digital shearography has been selected as the measurement and visualization tool of strain distribution due to its various advantages such as full field view and non-contact advantages. Finally, the test method has been applied to rank and optimize the structural configuration around appliqués' to reduce / eliminate failure.
Technical Paper

A Sound Quality System for Engineers

2001-03-05
2001-01-3834
In the eighties, the main concern in the automotive industry from a designer's standpoint was a level issue. In the nineties, the market has put more stringent requirements on the automotive industry with respect to noise in general and psychoacoustics. The governments have imposed lower limits with respect to pass-by noise standards. Customers are spending more time in their car than in the past and are demanding acoustical comfort. All of this is leading to an environment where a sound quality system is becoming a daily tool in the design and trouble-shooting world. This paper describes what should be looked for in a sound, how to quantify these properties and what tools are needed. These steps are then applied in a case study.
Technical Paper

A Source-Transfer-Receiver Approach to NVH Engineering of Hybrid/Electric Vehicles

2012-11-25
2012-36-0646
Vehicles with electrified powertrains are being introduced at an increasing pace. On the level of interior sound, one is often inclined to assume that NVH problems in EV have disappeared together with the combustion engine. Three observations demonstrate that this is not the case. First of all, only the dominant engine sound disappears, not the noise from tire, wind or auxiliaries, which consequently become increasingly audible due to the removal of the broadband engine masking sound. Secondly, new noise sources like tonal sounds from the electro-mechanical drive systems emerge and often have, despite their low overall noise levels, a high annoyance rating. Thirdly, the fact that engine/exhaust sounds are often used to contribute to the “character” of the vehicle leads to an open question how to realize an appealing brand sound with EV. Hybrid vehicles are furthermore characterized by mode-switching effects, with impact on both continuity feeling and sound consistency problems.
Technical Paper

A Steel Solution for a Firewall Using a Hybrid Test/CAE Approach

2009-04-20
2009-01-1547
The firewall design of a BMW1 is optimized for interior noise and weight using a Hybrid Interior Noise Synthesis (HINS) approach. This method associates a virtual firewall with a test based body model. A vibro-acoustic model of the firewall panel, including trim elements and full vehicle boundary conditions, is used for predictions in the 40 Hz - 400 Hz range. The short calculation time of this set-up allows multiple design iterations. The firewall noise is reduced by 0.9 dB and its mass by 5.1% through structural changes. Crashworthiness is maintained at its initial level using advanced steel processing. The total interior noise shows improvement in the 90 Hz - 140 Hz range.
Technical Paper

A Survey of Sound and Vibration Interaction

2005-05-16
2005-01-2472
When driving or riding in a vehicle, the customer is bombarded with sensory stimuli. These include tactile, auditory, olfactory and visual. In addition, the customer may be asked to perform various routine driving tasks that can have an influence on the perception of each of the aforementioned senses. Or perhaps, the influence of one sense may affect the perception of another. Since sound rarely occurs void of felt vibration and vice-versa, there is reason to believe one may influence the perception of the other, or that the two may interact in some way when the customer is exposed to a particular NVH (Noise Vibration and Harshness) event in a vehicle. The NVH engineer wishes to gage a sound or vibration's impact on the customer and make a determination as to whether corrective actions on the vehicle are necessary. NVH issues routinely show up as top warranty and customer satisfaction concerns.
X