Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Detailed Chemical Kinetic Analysis of Low Temperature Non-Sooting Diesel Combustion

2005-04-11
2005-01-0923
We have developed a model of the diesel fuel injection process for application to analysis of low temperature non-sooting combustion. The model uses a simplified mixing correlation and detailed chemical kinetics to analyze a parcel of fuel as it moves along the fuel jet, from injection to evaporation and ignition. The model predicts chemical composition and soot precursors, and is applied at conditions that result in low temperature non-sooting combustion. Production of soot precursors is the first step toward production of soot, and modeling precursor production is expected to give insight into the overall evolution of soot inside the engine. The results of the analysis show that the model has been successful in describing many of the observed characteristics of low temperature combustion.
Technical Paper

Gaseous Fuel Injection Modeling Using a Gaseous Sphere Injection Methodology

2006-10-16
2006-01-3265
To facilitate the growing interest in hydrogen combustion for internal combustion engines, computer models are being developed to simulate gaseous fuel injection, air entrainment and the ensuing combustion. This paper introduces a new method for modeling the injection and air entrainment processes for gaseous fuels. Modeling combustion is not covered in this paper. The injection model uses a gaseous sphere injection methodology, similar to liquid droplet injection techniques used for liquid fuel injection. In this paper, the model concept is introduced and model results are compared with correctly- and under-expanded experimental data.
Technical Paper

Improving Ethanol Life Cycle Energy Efficiency by Direct Utilization of Wet Ethanol in HCCI Engines

2007-07-23
2007-01-1867
Homogenous Charge Compression Ignition (HCCI) is a new engine technology with fundamental differences over conventional engines. HCCI engines are intrinsically fuel flexible and can run on low-grade fuels as long as the fuel can be heated to the point of ignition. In particular, HCCI engines can run on “wet ethanol:” ethanol-in-water mixtures with high concentration of water, such as the high water content ethanol-in-water mixture that results from fermentation of corn mash. Considering that much of the energy required for processing fermented ethanol is spent in distillation and dehydration, direct use of wet ethanol in HCCI engines considerably shifts the energy balance in favor of ethanol.
X