Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Assessment of a Three-Semester Mechanical Engineering Capstone Design Sequence Based on the SAE Collegiate Design Series

2019-04-02
2019-01-1126
Mechanical engineering students at Lawrence Technological University complete a five-credit hour capstone project: either an SAE collegiate design series (CDS) vehicle or an industry-sponsored project (ISP). Students who select the SAE CDS option enroll in a three-semester, three-course sequence. Each team of seniors designs, builds, and competes with their vehicle at one of the SAE CDS events. Three years after implementing major changes to the course structure and content, the three-semester capstone design sequence is revisited. Finalized learning objectives are presented and the sequence is assessed with a mix of direct, indirect, and anecdotal assessment. Student performance, as measured directly with design reports, milestones, and project completion, is good. Of the five Lawrence Tech CDS teams, only one has failed to be ready for competition since the changes were implemented.
Technical Paper

Non-Destructive Evaluation for High-Pressure Composite Tubes using a Hybrid Approach

2019-04-02
2019-01-1268
Recently, composite materials/structures are getting increasingly used in the automotive and aerospace industry. Defects issue is commonly associated with the use of composite materials/structures. Reliable Non-Destructive Evaluation (NDE) of composite structures is still challenging due to the existence of small size defects. In this research, a hybrid approach is used to accurately determine small size internal defects. In this hybrid approach, X-Ray Computed Tomography is used as a reference to accurately determine all defect locations, then a digital shearography method is used to conduct fast NDE for in-line testing. The critical shearographic NDE parameters such as shearing angle, shearing distance and loading amount are determined and optimized based on the X-ray CT scan result. From the comparison of X-ray CT scan results and digital shearography NDE results, the detection rate of digital shearography for defects with a size of larger than 1mm is from 91.91% to 97.30%.
X