Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

A New Framework for Modeling Shock-Turbulence Interactions

2020-10-14
2020-01-5092
The objective of this study is to develop a robust framework to model shock-turbulence interactions that happen in many engineering applications dealing with compressible flows. The model is essentially a hybrid algorithm to address the conflict between turbulence modeling and shock-capturing requirements. A skew-symmetric form of a co-located finite volume scheme with minimum aliasing errors is implemented to model the turbulent region in the combination of a semi-discrete, central scheme to capture the discontinuities with sufficiently low dissipation to minimize the effect of large eddy simulation (LES) for turbulent flows. To evaluate the effectiveness of the model, LESs are conducted to study the interaction of stationary shocks with turbulent flows. The simulations of the shock-turbulence interaction show the same physical trends as previously published results for high-fidelity DNS and LES.
Technical Paper

A Passive Solution to Differential Transient Cooling Issues Using Phase Change Materials

2016-04-05
2016-01-0008
Thermal management systems (TMS) of armored ground vehicle designs are often incapable of sustained heat rejection during high tractive effort conditions and ambient conditions. During these conditions, which mainly consist of high torque low speed operations, gear oil temperatures can rise over the allowable 275°F limit in less than twenty minutes. This work outlines an approach to temporarily store excess heat generated by the differential during high tractive effort situations through the use of a passive Phase Change Material (PCM) retrofit thereby extending the operating time, reducing temperature transients, and limiting overheating. A numerical heat transfer model has been developed based on a conceptual vehicle differential TMS. The model predicts the differential fluid temperature response with and without a PCM retrofit. The developed model captures the physics of the phase change processes to predict the transient heat absorption and rejection processes.
Technical Paper

Aerodynamic Evaluation on Formula SAE Vehicles

2001-03-05
2001-01-1270
Aerodynamics plays an important role in the dynamic behavior of a vehicle. The purpose of this paper is to evaluate external and internal aerodynamics of the 1999 and 2000 Lawrence Technological University Formula SAE vehicles. The external aerodynamic study will be limited to form and interference drag and the evaluation of lift. The internal aerodynamics study will be limited to ram air to the intake, heat exchanger, and oil cooler.
Technical Paper

An Adjustable Aluminum Differential

2001-03-05
2001-01-0883
The 2000 Formula SAE Team at Lawrence Technological University (LTU) has designed a chain driven, three-piece aluminum differential unique from past years. This innovative design introduces an adjustable chain mount replacing conventional shackles. Made completely of aluminum, this device moves the entire rear drive train. The gear set remains to be limited slip with a student designed housing. The idea of an aluminum housing with manufactured gear set is a continued project at LTU. After cutting approximately 33% from the weight of the 1999 differential, the 2000 is geared toward a simpler, and smaller design, easier assembly and lighter weight. After reading this brief overview, the idea of this paper is to provide an understanding of the reasoning behind the choices made on the LTU driveline team. FIGURE 1
Journal Article

Analyzing Field Failures of Engine Valve Springs in Presence of Non Metallic Inclusions by Applying Statistical and Fracture Mechanics Models

2009-04-20
2009-01-0528
The reliability of engine valve springs is a very important issue from the point of view of warranty. This paper presents a combined experimental and statistical analysis for predicting the fatigue limit of high tensile engine valve spring material in the presence of non-metallic inclusions. Experimentally, Fatigue tests will be performed on valve springs of high strength material at different stress amplitudes. A model developed by Murakami and Endo, which is based on the fracture mechanics approach, Extreme value statistics (GUMBEL Distribution) and Weibull Distribution will be utilized for predicting the fatigue limit and the maximum inclusion size from field failures. The two approaches, experimental and theoretical, will assist in developing the S-N curve for high tensile valve spring material in the presence of non-metallic inclusions.
Technical Paper

Correlations Among Monotonic Tensile Properties and Simple Approximations that Predict Strain-Controlled Fatigue Properties of Steels

2013-04-08
2013-01-1213
In this study, a new nonlinear correlation between Brinell hardness and ultimate tensile strength is proposed. The correlation factor in this case is higher than that found in the current literature. The ultimate tensile strength is replaced by an equivalent hardness expression in the Modified Universal Slopes Method. This change results in fatigue parameters that are predicted using hardness, true fracture ductility, and modulus of elasticity. This new fatigue life prediction approach is compared with the original Modified Universal Slopes method and experimental data in literature. This method is valid for steel with hardness that ranges from 150HB to 660HB. The results show that this method provides better approximations of the strain-life curves when compared with the Modified Universal Slopes and experimental data.
Technical Paper

Design of an Aluminum Differential for a Racing Style Car

2000-03-06
2000-01-1156
The 1999 Lawrence Technological University (LTU) drive train consists of a sprocket and chain assembly that delivers the torque, developed by a 600cc Honda F3 engine, to the rear wheels. The torque is transferred through a limited-slip, torque sensing differential unit comprised of a gear set in a student designed housing. The 1999 differential is a second-generation aluminum housing. The idea of using aluminum was first attempted with the 1998 team who successfully completed and used aluminum despite much complexity and a few design flaws. Therefore, in the LTU Formula Team's continuing effort to optimize the design, a new less complex design was conceived to house the gear set. This innovative design reduces the number of housing components from three in 1998, to two in 1999.
Technical Paper

Effects of Inlet Curved Spacer Arrancement on Centrifugal Pump Impellers

2017-03-28
2017-01-1607
This paper presents an experimental investigation of flow field instabilities in a centrifugal pump impeller at low flow rates. The measurements of pump hydraulic performance and flow field in the impeller passages were made with a hydraulic test rig. Analysis of Q-ΔP-η data and flow structures in the impeller passages were performed. In the present work, the effect of various flowrates on centrifugal pump impeller performance was analyzed based on pump measured parameters. The impeller’s geometry was modified, with positioning the curved spacer at the impeller suction side. This research investigates the effect of each inlet curved spacer model on pump performance improvement. The hydraulic performance and cavitation performance of the pump have been tested experimentally. The flow field inside a centrifugal pump is known to be fully turbulent, three dimensional and unsteady with recirculation flows and separation at its inlet and exit.
Technical Paper

Evolution of Intake Design for a Small Engine Formula Vehicle

2001-03-05
2001-01-1211
To obtain a maximum range for usable torque, Helmholtz theory is utilized to tune an Honda CBR 600 cc engine. The design objectives were to: 1) Increase performance by reducing pressure losses in the entire intake system; 2) Maximize the restrictor's design to increase airflow at lower pressure drops; 3) Improve throttle response through throttle body design and reduction of turbulence when full open; 4) Utilize runner design to improve tuning effects as predicted by Helmholtz resonance theory and; 5) Incorporate a plenum design with equal air distribution to all four cylinders.
Technical Paper

Fatigue Life Improvement through the “NOVA” Process

2013-04-08
2013-01-1400
The experimental methods focused on utilizing the newly developed NOVA induction heating and hardening manufacturing process as an adapted method to produce high performance engine valve springs. A detailed testing plan was used to evaluate the expected and theorized possibility for fatigue life enhancement. An industry standard statistical analysis method and tools were employed to objectively substantiate the findings. Fatigue cycle testing using NOVA induction-hardened racing valve springs made of ultra-high tensile material were compared to data for springs with traditional heat treatment and those with standard processing. The results were displayed using Wöhler and modified Haigh fatigue life diagrams. The final analysis suggests that NOVA processed springs have a seemingly slight, yet significant benefit in fatigue life of 5 - 7% over springs processed through a competing method.
Technical Paper

Minimizing Cost of Material Variances in Printed Circuit Board Assembly

2007-04-16
2007-01-0781
Controlling the Cost of Variance is essential to the manufacturing process of Printed Circuit Board Assembly for low volume high mix production. The material variance is identified as the additional components and resources consumed beyond the minimum required to complete the project. This Quantity Variance occurs at the effects of defects at key steps of the manufacturing process. Such occurrences result in the need to purchase additional components for the completion of the order. These additional components termed Quantity Variance alter the sequence of the manufacturing process affecting quality, timely delivery of the job and directly impacting company profitability.
Technical Paper

Optimization of Modified Car Body Using Mesh Morphing Techniques in CFD

2016-04-05
2016-01-0009
Today's strict fuel economy requirement produces the need for the cars to have really optimized shapes among other characteristics as optimized cooling packages, reduced weight, to name a few. With the advances in automotive technology, tight global oil resources, lightweight automotive design process becomes a problem deserving important consideration. It is not however always clear how to modify the shape of the exterior of a car in order to minimize its aerodynamic resistance. Air motion is complex and operates differently at different weather conditions. Air motion around a vehicle has been studied quite exhaustively, but due to immense complex nature of air flow, which differs with different velocity, the nature of air, direction of flow et cetera, there is no complete study of aerodynamic analysis for a car. Something always can be done to further optimize the air flow around a car body.
Technical Paper

Shrinkage Analysis of a Constrained Thin Walled Injection Molded Component Using a Traditional Flatbed Scanner and Photometric Techniques

2008-04-14
2008-01-1447
A study was performed to determine the effects of varying the wall thickness and material glass fiber concentration for parallel and perpendicular shrinkage rates for a constrained thin-walled box shaped component. An analysis of the shrinkage for the bottom portion of a 3 dimensional constrained thin walled injection molded component was performed using measurements made from bitmap images of the components that were obtained from a traditional flatbed scanner. The shrinkage rates were determined by comparing mold cavity hatch lines to the correlating transposed hatch lines on the plastic molded component. The perpendicular and parallel shrinkage rates were determined and are discussed as a function of thickness and glass fiber content. A wide range of processing control factors was used in the study.
Technical Paper

Surface Quality Inspection for Vehicle Front Panel Using Polarized Laser Inspection Method

2017-03-28
2017-01-0395
Vehicle front panel is an interior part which has a major impact on the consumers’ experience of the vehicles. To keep a good appearance during long time aging period, most of the front panel is designed as a rough surface. Some types of surface defects on the rough surface can only be observed under the exposure of certain angled sun light. This brings great difficulties in finding surface defects on the production line. This paper introduces a novel polarized laser light based surface quality inspection method for the rough surfaces on the vehicle front panel. By using the novel surface quality inspection system, the surface defects can be detected real-timely even without the exposure under certain angled sun light. The optical fundamentals, theory derivation, experiment setup and testing result are shown in detail in this paper.
Technical Paper

The Impact of Aerodynamics on Vehicle Performance in a Formula SAE Racing Style Vehicle

2001-11-12
2001-01-2744
Aerodynamic drag is the force that restricts the forward velocity of a vehicle. Sources of drag are form drag, interference drag, internal flow drag, surface friction, and induced drag. Aerodynamic drag directly impacts the fuel economy attainable by a vehicle. In the Formula SAE competition (FSAE), fuel economy is a factor during the endurance phase. This paper will focus on the effects of aerodynamic drag and how it impacts the fuel economy of a FSAE racing style vehicle. Using the Lawrence Technological University (LTU) 1999 and 2000 cars to study and evaluate various methods to reduce drag and optimize fuel economy. Theoretical and experimental methods will be used and the study will be limited to the effects of form and interference drag.
Technical Paper

Traction Control Applications in Engine Control

2000-12-04
2000-01-3464
Traction control is an electronic means of reducing the wheel spin caused by the application of excessive power for the valuable grip. Wheel spin can result in loss control of the car, reduce acceleration and cause tire wear. In the front wheel tire the loss grip is experienced as underwater, where the front of the car ‘pushes’ forward, not turning as much as the driver has exposed by turning the tearing. In the rear wheels slip causing oversteer, where the rear of the car swings around, turning much sharper than the driver anticipated. The result of all these problems is that the driver starts loosing control of the vehicle, which is undesirable. With the new design of the Traction Control System, the amount of the wheel slippage is precisely controlled. In racing, this means corner can be taken constantly quicker, with system applying the maximum power possible while the driver remains in total control.
Technical Paper

Using Computational Fluid Dynamics for the Design, Assessment and Optimization of an Aerodynamic Body Kit on a Newly Designed Formula SAE Collegiate Competition Vehicle

2019-04-02
2019-01-0642
Formula SAE Collegiate Competition teams now regularly integrate aerodynamic body kits with their vehicles which have significant benefits in producing downforce. This use of body kits (or aero packages) and the improvement to vehicle aerodynamics they provide, have resulted in these systems becoming a necessity for any team wishing to remain competitive in Formula SAE (FSAE). To address this the Lawrence Technological University (LTU) Formula SAE team incorporated an aerodynamic body kit into their 2018 vehicle. Using computational fluid dynamics (CFD) an aerodynamic analysis was performed comparing the efficacy of a car that did not have an aero package to a car that did. Two separate simulation programs were employed to effectively and accurately assess this change. By using both SolidWorks and SimScale software to generate data, the results of each were compared to assess the accuracy of each.
X