Refine Your Search

Topic

Search Results

Technical Paper

A Relationship between Lift and Lateral Aerodynamic Characteristics for Passenger Cars

2010-04-12
2010-01-1025
Aerodynamic aids, such as spoilers, applied to the rear of cars can provide drag reduction to improve performance, or can enhance high speed stability by reducing lift at the rear axle. In some cases these can be conflicting demands. It has been noted, however, that when rear axle lift is reduced there is often a reduction in yawing moment which has a beneficial effect on crosswind sensitivity. Wind tunnel results from real road vehicles are presented to illustrate this effect. This beneficial relationship is further explored in a wind tunnel experiment using simple models to represent road vehicles. Force and moment coefficients as a function of yaw angle are measured for a range of vehicle geometries which generate a substantial variation in lift. It is shown that as lift is reduced, yawing moment is also reduced, while side force and rolling moment are increased.
Technical Paper

A Review of the Literature on Modelling of Integrated SCR-in-DPF Systems

2017-03-28
2017-01-0976
The integration of selective catalytic reduction catalysts (SCR) into diesel particulate filters (DPF) as a way to treat nitrogen oxides (NOx) and particulate matter (PM) emission is an emerging technology in diesel exhaust aftertreatment. This is driven by ever-tightening limits on NOx and PM emission. In an integrated SCR-in-DPF (also known as SCRF®, SCR-on-DPF, SDPF, or SCR coated filter), the SCR catalyst is impregnated within the porous walls of the DPF. The compact, low weight/volume of the integrated unit provides improvement in the diesel engine cold start emission performance. Experimental investigations have shown comparable performance with standard SCR and DPF units for NOx conversion and PM control, respectively. The modelling of the integrated unit is complicated.
Technical Paper

Addressing the Heat Exchange Question for Thermo-Electric Generators

2013-04-08
2013-01-0550
The use of thermo-electric (TE) generation systems in internal combustion engines (ICEs) to reduce the carbon dioxide emission by harnessing the exhaust thermal energy is showing increasing promise. In addition, integration with after treatment devices is a development route for this technology that offers a great potential. Recent work on TE systems have shown that the overall efficiency of present TE generation systems are constrained by, the limitations of the conversion efficiency and operating temperatures of TE materials; fabrication quality, durability and thermal performance of the thermo-electric modules (TEMs); geometrical configuration and heat exchange efficiency of thermo-electric generator (TEG) and; conversion techniques of the TEG's electrical output to a form suitable for vehicle systems.
Technical Paper

Analysis of the Impact on Diesel Engine Fuel Economy and Emissions by Variable Compression Ratio Using GT-Power Simulation

2010-04-12
2010-01-1113
Variable compression ratio in conjunction with a control system is an effective way to improve performance and reduce emissions in a diesel engine. There are various methods that may be employed that include geometry changes and varying valve timing to change the effective compression ratio. In this paper, a simulation study is presented that is based on a modern, multi-cylinder, fixed compression ratio diesel engine equipped with exhaust gas recirculation (EGR) and a variable geometry turbocharger (VGT). The engine is represented using the GT-Power code, and includes a predictive combustion model. The aim of the investigation is to identify the impact of variable compression ratio on fuel economy and emission reduction and whether realistic optimal conditions exist. This paper describes how a formal design of experiments procedure is used to define the simulation conditions. Cost functions are defined with different weights for fuel consumption, NOx and soot emissions.
Technical Paper

Application of CFD to the Matching of In-Cylinder Fuel Injection and Air Motion in a Four Stroke Gasoline Engine

1997-05-01
971601
The in cylinder air motion, fuel air mixing, evaporation, combustion and exhaust emissions have been simulated for a four stroke direct injection gasoline engine using the KIVA II code. A strong controlled tumbling air motion was created in the cylinder, through a combination of a conventional pentroof four valve cylinder head, in conjunction with a piston having a stepped crown and offset combustion bowl. A range of injection strategies were employed to optimise combustion rate and exhaust emission (NOx and unburned hydrocarbons (fuel)), at two operating conditions - one with a stoichiometric air fuel mixture and the other with a lean mixture of 30:1 air/fuel ratio. Injection directed towards the piston bowl with a hollow cone jet, in a single pulse, has shown the best results regarding burned mass fraction and level of unburned HC. Fuel concentration, air motion, combustion characteristics and pollutants level are presented for lean and stoichiometric cases.
Journal Article

Experimental Data for the Validation of Numerical Methods - SAE Reference Notchback Model

2014-04-01
2014-01-0590
The use of simulation tools by vehicle manufacturers to design, optimize and validate their vehicles is essential if they are to respond to the demands of their customers, to meet legislative requirements and deliver new vehicles ever more quickly. The use of such tools in the aerodynamics community is already widespread, but they remain some way from replacing physical testing completely. Further advances in simulation capabilities depend on the availability of high quality validation data so that simulation code developers can ensure that they are capturing the physics of the problems in all the important areas of the flow-field. This paper reports on an experimental program to generate such high quality validation data for a SAE 20 degree backlight angle notchback reference model.
Technical Paper

Inlet Condition Dependency of Centrifugal Compressor Mapped Efficiency

2014-10-13
2014-01-2854
Modelling of turbochargers based on steady state operating maps for turbine and compressor rotors is widely recognized to have limitations arising from flow pulsations and heat transfer effects that are not well accounted for by interpolation and extrapolation from the mapped data. With implementation of low pressure exhaust gas recirculation systems and multi-stage boosting, the inlet conditions of centrifugal compressors vary more widely than traditional single stage compression systems. Understanding the impact of the inlet conditions on irreversibilities, and therefore efficiency complements existing works on pulse flow and heat transfer effects in informing the engine modelling community. This research experimentally explores the effect of inlet pressure and temperature on the total-total efficiency of a steady flow centrifugal compressor across a range of conditions in isolation of pulse flow effects and with negligible heat transfer.
Technical Paper

MIMO Control of a Turbogenerator for Energy Recovery

2020-04-14
2020-01-0261
Market trends for increased engine power and more electrical energy on the powergrid (3kW+), along with customer demands for fuel consumption improvements and emissions reduction, are driving requirements for component electrification, including turbochargers. GTDI engines waste significant exhaust enthalpy; even at moderate loads the WG (Wastegate) starts to open to regulate the turbine power. This action is required to reduce EBP (Exhaust Back Pressure). Another factor is catalyst protection, where the emissions device is placed downstream turbine. Lambda enrichment or over-fueling is used to perform this. However, the turbine has a temperature drop across it when used for energy recovery. Since catalyst performance is critical for emissions, the only reasonable location for an additional device is downstream of it. This is a challenge for any additional energy recovery, but a smaller turbine is a design requirement, optimized to operate at lower pressure ratios.
Technical Paper

Measurement of Formula One Car Drag Forces on the Test Track

1996-12-01
962517
Coastdown testing is a proven method for determining the drag coefficients for road cars whilst the vehicle is in its normal operating environment. An accurate method of achieving this has been successfully developed at Loughborough University. This paper describes the adaptation and application of these techniques to the special case of a contemporary Formula One racing car. The work was undertaken in conjunction with the Benetton Formula One racing team. The paper outlines the development and application of a suitable mathematical model for this particular type of vehicle. The model includes the aerodynamic, tyre, drivetrain and the un-driven wheel drags and accounts for the change in aerodynamic drag due to ambient wind and changes in vehicle ride height during the coastdown. The test and analysis methods are described.
Journal Article

Methodology for the Design of an Aerodynamic Package for a Formula SAE Vehicle

2014-04-01
2014-01-0596
Recent changes to the rules regarding aerodynamics within Formula SAE, combined with faster circuits at the European FSAE events, have made the implementation of aerodynamic devices, to add down-force, a more relevant topic. As with any race series it is essential that a detailed analysis is completed to establish the costs and benefits of including an aerodynamic package on the vehicle. The aim of the work reported here was to create a methodology that would fully evaluate all aspects of the package and conclude with an estimate of the likely gain in points at a typical FSAE event. The paper limits the analysis to a front and rear wing combination, but the approach taken can be applied to more complex aerodynamic packages.
Technical Paper

Modelling the Exhaust Gas Recirculation Mass Flow Rate in Modern Diesel Engines

2016-04-05
2016-01-0550
The intrinsic model accuracy limit of a commonly used Exhaust Gas Recirculation (EGR) mass flow rate model in diesel engine air path control is discussed in this paper. This EGR mass flow rate model is based on the flow of a compressible ideal gas with unchanged specific heat ratio through a restriction cross-area within a duct. A practical identification procedure of the model parameters is proposed based on the analysis of the engine data and model structure. This procedure has several advantages which include simplicity, low computation burden and low engine test cost. It is shown that model tuning requires only an EGR valve sweep test at a few engine steady state operating points.
Technical Paper

Optical Analysis and Measurement of Crankcase Lubricant Oil Atomisation

2012-04-16
2012-01-0882
Crankcase emissions are a complex mixture of combustion products and, specifically Particulate Matter (PM) from lubricant oil. Crankcase emissions contribute substantially to the particle mass and particle number (PN) emitted from an internal combustion engine. Environmental legislation demands that the combustion and crankcase emissions are either combined to give a total measurement or the crankcase gases are re-circulated back into the engine, both strategies require particle filtration. There is a lack of understanding regarding the physical processes that generate crankcase emissions of lubricant oil, specifically how the bulk lubricant oil is atomised into droplets. In this paper the crankcase of a motored compression ignition engine, has been optically accessed to visualise the lubricant oil distribution. The oil distribution was analysed in detail using high speed laser diagnostics, at engine speeds up to 2000 rpm and oil temperatures of 90°C.
Technical Paper

Performance of Slotted Metallic Membranes as Particulate Filters

2014-10-13
2014-01-2807
Stringent IC engine PM emission regulation requires development of future filter substrate materials to achieve high filtration efficiency, low filter pressure drop, low cost and highly durable solutions. Monolithic wall flow filters perform well as they achieve high filtration efficiency due to the formation of the PM cake structure while maintaining low substrate face velocities due to the large filtration area. Within the process industry, Micropore™ slotted metallic membrane filters offer both large surface areas and low filter pressure drops while maintaining the durability of metal substrates. The pore structure and pore arrangement can be readily tailored to suit specific applications. This paper characterizes a 300 μm thickness Micropore™ metallic membrane with slots of 10 μm by 400 μm in size in the context of application as an engine exhaust particulate filter. The investigation was based on single layer of Micropore™ slotted metallic membrane with size of 52 mm in diameter.
Technical Paper

Prediction of Acoustic Emissions of Turbocharger Bearings

2020-09-30
2020-01-1504
Turbochargers are progressively used in modern automotive engines to enhance engine performance and reduce energy loss and adverse emissions. Use of turbochargers along with other modern technologies has enabled development of significantly downsized internal combustion engines. However, turbochargers are major sources of acoustic emissions in modern automobiles. Their acoustics has a distinctive signature, originating from fluid-structure interactions. The bearing systems of turbochargers also constitute an important noise source. In this case, the acoustic emissions can mainly be attributed to hydrodynamic pressure fluctuations of the lubricant film. The developed analytical model determines the lubricant pressure distribution in the floating journal bearings used mainly in the modern turbocharges. This allows for an estimation of acoustic emissions.
Technical Paper

Simulation of Exhaust Unburned Hydrocarbons from a Spark Ignition Engine, Originating from In-Cylinder Crevices

1996-10-01
961956
In this paper the effect of in-cylinder crevices formed by the piston cylinder clearance, above the first ring, and the spark plug cavity, on the entrapment of unburned fuel air mixture during the late compression, expansion and exhaust phases of a spark ignition engine cycle, have been simulated using the Computational Fluid Dynamic (CFD) code KIVA II. Two methods of fuelling the engine have been considered, the first involving the carburetion of a homogeneous fuel air mixture, and the second an attempt to simulate the effects of manifold injection of fuel droplets into the cylinder. The simulation is operative over the whole four stroke engine cycle, and shows the efflux of trapped hydrocarbon from crevices during the late expansion and exhaust phases of the engine cycle.
Technical Paper

The Application of Particle Image Velocimetry in Automotive Aerodynamics.

2010-04-12
2010-01-0120
Particle Image Velocimetry has developed over the last decade into a relatively mature flow-field measurement technique, capable of providing insight into time averaged and instantaneous flows that in the past have not been readily accessible. The application of the method in the measurement and analysis of flows around road vehicles has so far been limited to a relatively small number of specialist applications, but its use is expanding. This paper reviews the modern digital PIV technique placing emphasis on the important considerations required to obtain reliable and accurate data. This includes comments on each aspect of the PIV process, including initial setup and image acquisition, processing, validation and analysis. A number of automotive case studies are presented covering different aspects of the method, including a diffuser exit flow, edge radius optimization, ‘A’ pillar flow and aerial wake flows.
Technical Paper

The Effect of Vehicle Cruising Speed on the Dynamics of Automotive Hypoid Gears

2012-06-13
2012-01-1543
The dynamics of automotive differentials have been studied extensively to improve their efficiency and additionally, in recent years, generated noise and vibration. Various mathematical models have been proposed to describe the contact/impact of gear teeth pairs. However, the influence of vehicular cruising speed on the resisting torque has not been considered in sufficient detail. This can lead to unrealistic predictions with regards to loss of contact of teeth pair, a phenomenon which leads to NVH issues. The current work presents a torsional model of a hypoid gear pair. The resisting torque is a function of the traction force and aerodynamic drag, whilst the vehicle is cruising at nominally constant speed. The pinion input torque is derived through assumed instantaneous equilibrium conditions. In this approach, realistic excitation capturing the vehicle's driving conditions is imposed on the dynamics of the hypoid gear pair.
Technical Paper

The Effects of Outlet Geometry on Automotive Demister Performance

2000-03-06
2000-01-1277
The established method of clearing a misted car windshield or of maintaining a clear view under misting conditions is through the application of an air supply via jet outlets in the instrument panel. The ability of such arrangements to perform adequately is a function of the prevailing environmental conditions, the vehicle speed, the condition of the demist air source and the geometry and arrangement of the jet outlets. This paper presents experimental data obtained in a purpose built environmental chamber designed to accommodate simple rectangular jets impinging on a misted glass surface. The facility consists of three conditioned air sources applied to a test chamber designed to represent the external, internal and demist air flows. Mist conditions on the glass surface are determined using a novel technique employing a CCD camera acquiring grey scale images which are digitally analysed to generate mist detection, grading and clearing contour data.
Journal Article

The Impact of Biodiesel on Particle Number, Size and Mass Emissions from a Euro4 Diesel Vehicle

2010-04-12
2010-01-0796
New European emissions legislation (Euro5) specifies a limit for Particle Number (PN) emissions and therefore drives measurement of PN during vehicle development and homologation. Concurrently, the use of biofuel is increasing in the marketplace, and Euro5 specifies that reference fuel must contain a bio-derived portion. Work was carried out to test the effect of fuels containing different levels of Fatty Acid Methyl Ester (FAME) on particle number, size, mass and composition. Measurements were conducted with a Cambustion Differential Mobility Spectrometer (DMS) to time-resolve sub-micron particles (5-1000nm), and a Horiba Solid Particle Counting System (SPCS) providing PN data from a Euro5-compliant measurement system. To ensure the findings are relevant to the modern automotive business, testing was carried out on a Euro4 compliant passenger car fitted with a high-pressure common-rail diesel engine and using standard homologation procedures.
Technical Paper

The Investigation into a PC-Based Fluidic Fuel Injection System for Passenger Cars

1995-02-01
950070
This paper describes a gasoline injection system based on air-assisted fluidic injectors. This injection system was implemented on a research engine and the results of air to fuel ratio (AFR) variations, engine combustion characteristics and exhaust emissions from the fluidic injector unit were compared with those from the baseline solenoid type injector. It was demonstrated that the fluidic system produces 9% to 20% lower HC emissions and 5% to 8% higher IMEP than the baseline injection system. This has confirmed the effectiveness of the use of the air-assisted fluidic injector stages and that the improved mixture preparation fuel presentation are obtained by the fluidic system. However, the cyclic flow stability of the fluidic device needs improvement.
X