Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Non-Thermal Particulate Filter Regeneration Using Rapid Pulse Electric Discharges

2013-04-08
2013-01-0518
This research introduces a new, novel approach to reverse flow particulate filter regeneration enabled by rapidly pulsed electric discharges. The discharges physically dislodge particulate matter (PM) from the filter substrate and allow a very low reverse air flow to transport it to a soot handling system. The system is operable independent of filter temperature, does not expose the filter to high thermal stresses or temperatures, has no apparent upper limit for filter PM-mass level (regeneration of a filter up to 17 g/L has been demonstrated), and does not require any catalyst. The system is inherently scalable allowing application to monolithic filters of any size or shape and can be tailored to suit specific application requirements such as limits on maximum regeneration time or power consumption. For example a light duty application would require as little as 200-500W electrical power to regenerate a filter in less than ten minutes (i.e. passenger car GPF or DPF).
Technical Paper

The Potential of Fuel Metering Control for Optimising Unburned Hydrocarbon Emissions in Diesel Low Temperature Combustion

2013-04-08
2013-01-0894
Low temperature combustion (LTC) in diesel engines offers attractive benefits through simultaneous reduction of nitrogen oxides and soot. However, it is known that the in-cylinder conditions typical of LTC operation tend to produce high emissions of unburned hydrocarbons (UHC) and carbon monoxide (CO), reducing combustion efficiency. The present study develops from the hypothesis that this characteristic poor combustion efficiency is due to in-cylinder mixture preparation strategies that are non-optimally matched to the requirements of the LTC combustion mode. In this work, the effects of three key fuel path parameters - injection fuel quantity ratio, dwell and injection timing - on CO and HC emissions were examined using a Central Composite Design (CCD) Design of Experiments (DOE) method.
X