Refine Your Search

Topic

Author

Search Results

Technical Paper

A Direct Comparison between Numerical and Experimental Results for Airborne Noise Levels in Automotive Transmission Rattle

2014-04-01
2014-01-1756
In this paper, a direct correlation between transmission gear rattle experiments and numerical models is presented, particularly focusing on the noise levels (dB) measured from a single gear pair test rig. The rig is placed in a semi-anechoic chamber environment to aid the noise measurements and instrumented with laser vibrometers, accelerometers and free field microphones. The input torsional velocity is provided by an electric motor, which is controlled by a signal generator, aiming to introduce an alternating component onto the otherwise nominal speed; thus, emulating the engine orders found in an internal combustion engine. These harmonic irregularities are conceived to be the triggering factor for gear rattle to occur. Hence, the rig is capable of running under rattling and non-rattling conditions. The numerical model used accounts for the gear pair's torsional dynamics, lubricated impacts between meshing teeth and bearing friction.
Technical Paper

A Fault-Tolerant Processor Core Architecture for Safety-Critical Automotive Applications

2005-04-11
2005-01-0322
The introduction of drive-by-wire systems into modern vehicles has generated new challenges for the designers of embedded systems. These systems, based primarily on microcontrollers, need to achieve very high levels of reliability and availability, but also have to satisfy the strict cost and packaging constraints of the automotive industry. Advances in VLSI technology have allowed the development of single-chip systems, but have also increased the rate of intermittent and transient faults that come as a result of the continuous shrinkage of the CMOS process feature size. This paper presents a low-cost, fault-tolerant system-on-chip architecture suitable for drive-by-wire and other safety-related applications, based on a triple-modular-redundancy configuration at the processor execution pipeline level.
Technical Paper

A Low Order Model of SCR-in-DPF Systems with Proper Orthogonal Decomposition

2018-04-03
2018-01-0953
This paper presents a method to achieve a low order system model of the urea-based SCR catalyst coated filter (SCR-in-DPF or SCRF or SDPF), while preserving a high degree of fidelity. Proper orthogonal decomposition (POD), also known as principal component analysis (PCA), or Karhunen-Loéve decomposition (KLD), is a statistical method which achieves model order reduction by extracting the dominant characteristic modes of the system and devises a low-dimensional approximation on that basis. The motivation for using the POD approach is that the low-order model directly derives from the high-fidelity model (or experimental data) thereby retains the physics of the system. POD, with Galerkin projection, is applied to the 1D + 1D SCR-in-DPF model using ammonia surface coverage and wall temperature as the dominant system states to achieve model order reduction.
Technical Paper

A Parallel Hybrid Drive System for Small Vehicles: Architecture and Control Systems

2016-04-05
2016-01-1170
The TC48 project is developing a state-of-the-art, exceptionally low cost, 48V Plug-in hybrid electric (PHEV) demonstration drivetrain suitable for electrically powered urban driving, hybrid operation, and internal combustion engine powered high speed motoring. This paper explains the motivation for the project, and presents the layout options considered and the rationale by which these were reduced. The vehicle simulation model used to evaluate the layout options is described and discussed. The modelling work was used in order to support and justify the design choices made. The design of the vehicle's control systems is discussed, presenting simulation results. The physical embodiment of the design is not reported in this paper. The paper describes analysis of small vehicles in the marketplace, including aspects of range and cost, leading to the justification for the specification of the TC48 system.
Technical Paper

A Process Definition Environment for Component Based Manufacturing Machine Control Systems Developed Under the Foresight Vehicle Programme

2002-03-04
2002-01-0468
The COMponent Based Paradigm for AGile Automation (COMPAG) provides a component-based solution to engine production-line machine control systems. The traditional PLC system is replaced with a distributed control network containing intelligent nodes comprising locally controlled actuators and sensors. The Process Definition Environment provides support for the specification, configuration, and maintenance of the machine control application and facilitates both the initial design and maintenance stages of the lifecycle by describing the control logic as a set of consistent timing and state transition diagrams commonly used in the initial design stages.
Journal Article

A Study on the Effect of Debris Location on a Double Element Wing in Ground Effect

2020-04-14
2020-01-0693
Multi-element front wings are essential in numerous motorsport series, such as Formula 1, for the generation of downforce and control of the onset flows to other surfaces and cooling systems. Rubber tyre debris from the soft compounds used in such series can become attached to the wing, reducing downforce, increasing drag and altering the wake characteristics of the wing. This work studies, through force balance and Particle Image Velocimetry (PIV) measurements, the effect a piece of debris has on an inverted double element wing in ground effect. The debris is modelled using a hard-setting putty and is located at different span and chord-wise positions around the wing. The sensitivity to location is studied and the effect on the wake analysed using PIV measurements. The largest effect on downforce was observed when the debris was located on the underside of the wing towards the endplates.
Technical Paper

Aerodynamic Side Forces on Passenger Cars at Yaw

2016-04-05
2016-01-1620
Side force has an influence on the behaviour of passenger cars in windy conditions. It increases approximately linearly with yaw angle over a significant range of yaw for almost all cars and the side force derivative, (the gradient of side force coefficient with yaw angle), is similar for vehicles of a given category and size. The shape factors and components which affect side force for different vehicle types are discussed. The dominant influence on side force, for most cars, however, is shown to be the vehicle height which is consistent with slender wing theory if the car and its mirror image are considered. This simple theory is shown to apply to 1-box and 2- box shapes, covering most MPVs, hatchbacks and SUVs, but does not adequately represent the side forces on notchback and fastback car shapes. Data from simple bodies is used to develop a modification to the basic theory, which is applied to these vehicle types.
Technical Paper

An Assessment of a Sensor Network Using Bayesian Analysis Demonstrated on an Inlet Manifold

2019-04-02
2019-01-0121
Modern control strategies for internal combustion engines use increasingly complex networks of sensors and actuators to measure different physical parameters. Often indirect measurements and estimation of variables, based off sensor data, are used in the closed loop control of the engine and its subsystems. Thus, sensor fusion techniques and virtual instrumentation have become more significant to the control strategy. With the large volumes of data produced by the increasing number of sensors, the analysis of sensor networks has become more important. Understanding the value of the information they contain and how well it is extracted through uncertainty quantification will also become essential to the development of control architecture. This paper proposes a methodology to quantify how valuable a sensor is relative to the architecture. By modelling the sensor network as a Bayesian network, Bayesian analysis and control metrics were used to assess the value of the sensor.
Journal Article

An Experimental Investigation into DEF Dosing Strategies for Heavy Duty Vehicle Applications

2015-04-14
2015-01-1028
In recent years urea selective catalytic reduction (SCR) has become the principal method of NOx abatement within heavy duty (HD) diesel exhaust systems; however, with upcoming applications demanding NOx reduction efficiencies of above 96 % on engines producing upwards of 10 g·kWh−1 NOx, future diesel exhaust fluid (DEF) dosing systems will be required to operate stably at significantly increased dosing rates. Developing a dosing system capable of meeting the increased performance requirements demands an improved understanding of how DEF sprays interact with changing exhaust flows. This study has investigated four production systems representing a diverse range of dosing strategies in order to determine how performance is influenced by spray structure and identify promising strategies for further development. The construction of an optically accessible hot-air flow rig has enabled visualisation of DEF injection into flows representative of HD diesel exhaust conditions.
Journal Article

An Objective Measure for Automotive Surface Contamination

2018-04-03
2018-01-0727
Surface contamination, or soiling, of the exterior of road vehicles can be unsightly, can reduce visibility and customer satisfaction, and, with the increasing application of surface-mounted sensors, can degrade the performance of advanced driver-assistance systems. Experimental methods of evaluating surface contamination are increasingly used in the product development process, but the results are generally subjective. The use of computational methods for predicting contamination makes objective measures possible, but comparable data from experiment is an important validation requirement. This article describes the development of an objective measure of surface contamination arising during experiments. A series of controlled experiments using ultraviolet (UV) dye-doped water are conducted to develop a robust methodology. This process is then applied to a simplified contamination test.
Technical Paper

An Optical Analysis of a DISI Engine Cold Start-Up Strategy

2015-09-01
2015-01-1877
Particulate number (PN) standards in the current ‘Euro 6’ European emissions standards pose a challenge for engine designers and calibrators during the warm-up phases of cold direct injection spark ignition (DISI) engines. To achieve catalyst light-off in the shortest time, engine strategies are often employed which inherently use more fuel to attain higher exhaust temperatures. This can lead to the generation of locally fuel-rich regions within the combustion chamber and the emission of particulates. This investigation analyses the combustion structures during the transient start-up phase of an optical DISI engine. High-speed, colour 9 kHz imaging was used to investigate five important operating points of an engine start-up strategy whilst simultaneously recording in-cylinder pressure.
Technical Paper

Analysis of SI Combustion Diagnostics Methods Using Ion-Current Sensing Techniques

2006-04-03
2006-01-1345
Closed-loop electronic control is a proven and efficient way to optimize spark ignition engine performance and to control pollutant emissions. In-cylinder pressure sensors provide accurate information on the quality of combustion. The conductivity of combustion flames can alternatively be used as a measure of combustion quality through ion-current measurements. In this paper, combustion diagnostics through ion-current sensing are studied. A single cylinder research engine was used to investigate the effects of misfire, ignition timing, air to fuel ratio, compression ratio, speed and load on the ion-current signal. The ion-current signal was obtained via one, or both, of two additional, remote in-cylinder ion sensors (rather than by via the firing spark plug, as is usually the case). The ion-current signals obtained from a single remote sensor, and then the two remote sensors are compared.
Technical Paper

Analysis of a Novel Method for Low-Temperature Ammonia Production Using DEF for Mobile Selective Catalytic Reduction Systems

2018-04-03
2018-01-0333
The worldwide introduction of new emission standards and new, more encompassing, legislating cycles have led to a need to increase both a selective catalytic reduction (SCR) system’s capacity and conversion efficiency. To this end, it is important for an SCR system to operate to the extremes of its temperature range which in many systems is currently limited by the temperature at which diesel exhaust fluid (DEF) can easily decompose without the formation of deposits. This paper analyses a new system for low-temperature ammonia provision to the SCR reaction. Ammonia Creation and Conversion Technology (ACCT) uses pressure controlled thermal decomposition of DEF followed by re-formation to form a fluid with greater volatility and the same ammonia density as DEF conforming to ISO 22241. A dosing strategy can then be employed where any combination of DEF or ACCT solution can be used to provide ammonia as a reductant over the whole activity temperature range of a catalyst.
Technical Paper

Automatic PI Controller Calibration Optimization using Model-Based Calibration Approach

2015-09-01
2015-01-1989
Model-based calibration (MBC) is a systematic method to calibrate an engine control unit (ECU) system. Due to the working principle of MBC, it is only being used for steady-state systems (time independent models). This limits the use of MBC; because an ECU contains statistical and dynamical systems. Due to the limitations of MBC, dynamical systems require manual tuning which may be time-consuming. With the increasing popularity in hybrid and electrical vehicle systems, most of them rely on dynamical systems. Therefore, MBC is about to be superseded by manual parameterization methods. Remarkably, MBC is not limited to the steady state systems. It can be achieved by separating the time factor of a system and extracting the statistical data from a time series measurement. Typically, MBC model is conceived as the representation of a system plant (i.e.: air path, fuel path, mean value engine model). As a matter of fact, MBC model is not limited to identification of system plant.
Technical Paper

Benefits of Stochastic Optimisation with Grid Price Prediction for Electric Vehicle Charging

2017-03-28
2017-01-1701
The goal of grid friendly charging is to avoid putting additional load on the electricity grid when it is heavily loaded already, and to reduce the cost of charging to the consumer. In a smart metering system, Day Ahead tariff (DA) prices are announced in advance for the next day. This information can be used for a simple optimization control, to select to charge at cheapest times. However, the balance of supply and demand is not fully known in advance and the Real-Time Prices (RTP) are therefore likely to be different at times. There is always a risk of a sudden price change, hence adding a stochastic element to the optimization in turn requiring dynamic control to achieve optimal time selection. A stochastic dynamic program (SDP) controller which takes this problem into account has been made and proven by simulation in a previous paper.
Journal Article

Characterisation of the Tyre Spray Ejected Downstream of a Bluff Automotive Body

2022-03-29
2022-01-0893
Considerations of surface contamination and airborne spray are becoming increasingly significant throughout the automotive design process. Advanced driver assistance systems, such as autonomous cruise control, are growing in popularity. These systems rely on external sensors, the performance of which may be impaired by both direct obstruction and spray. Existing experimental methods of assessing front-end surface contamination and wiper performance have typically utilised fixed spray-grids positioned upstream of the vehicle. The resulting spray is largely steady in nature, in contrast to the unsteady flow-field and tyre spray that would be produced by preceding vehicles. This paper presents the numerical analysis of the spray ejected downstream of a simplified automotive body. The continuous phase (air) is solved using a DDES-based approach coupled with a Lagrangian representation of the dispersed phase (water).
Technical Paper

Comparison of Neural Network Topologies for Sensor Virtualisation in BEV Thermal Management

2024-04-09
2024-01-2005
Energy management of battery electric vehicle (BEV) is a very important and complex multi-system optimisation problem. The thermal energy management of a BEV plays a crucial role in consistent efficiency and performance of vehicle in all weather conditions. But in order to manage the thermal management, it requires a significant number of temperature sensors throughout the car including high voltage batteries, thus increasing the cost, complexity and weight of the car. Virtual sensors can replace physical sensors with a data-driven, physical relation-driven or machine learning-based prediction approach. This paper presents a framework for the development of a neural network virtual sensor using a thermal system hardware-in-the-loop test rig as the target system. The various neural network topologies, including RNN, LSTM, GRU, and CNN, are evaluated to determine the most effective approach.
Technical Paper

Cycle-Driven Optimization of a Fixed-Structure Controller for Urea Dosing in a Mobile SCR System

2020-11-04
2020-01-5106
A model-based urea-dosing controller has been developed for the selective catalytic reduction (SCR) units on a diesel engine exhaust aftertreatment system (EATS). The SCR units consist of an integrated SCR-coated filter and then followed by a flow-through SCR catalyst. The controller was developed based on an analysis of the data generated from a Millbrook London Transport Bus (MLTB) test cycle fed into a validated model of the SCR-filter and SCR units. The critical system parameters that showed strong correlation with outlet nitrogen oxides (NOx) and ammonia (NH3) emissions were first identified, and then the sensitivity of those parameters was analyzed. The most sensitive system parameters were configured as the controller gain parameters. A proportional controller based on the key parameters with optimized gains settings for the MLTB cycle delivered over a 10% reduction in cumulative NOx emission over the cycle compared to a fixed NH3/NOx ratio (ANR) controller.
Technical Paper

Deep Optimization of Catalyst Layer Composition via Data-Driven Machine Learning Approach

2020-04-14
2020-01-0859
Proton exchange membrane fuel cell (PEMFC) provides a promising future low carbon automotive powertrain solution. The catalyst layer (CL) is its core component which directly influences the output performance. PEMFC performance can be greatly improved by the effective optimization of CL composition. This work demonstrates a deep optimization of CL composition for improving the PEMFC performance, including the platinum (Pt) loading, Pt percentage of carbon-supported Pt and ionomer to carbon ratio of the anode and the cathode,. The simulation results by a PEMFC three-dimensional (3D) computation fluid dynamics (CFD) model coupled with the CL agglomerate model is used to train the artificial neural network (ANN) which can efficiently predict the current density under different CL composition. Squared correlation coefficient (R-square) and mean percentage error in the training set and validation set are 0.9867, 0.2635% and 0.9543, 1.1275%, respectively.
Journal Article

Development of Model Predictive Controller for SOFC-IC Engine Hybrid System

2009-04-20
2009-01-0146
Fuel cell hybrid systems have emerged rapidly in efforts to reduce emissions. The success of these systems mainly depends on implementation of suitable control architectures. This paper presents a control system design for a novel fuel cell - IC Engine hybrid power system. Control oriented models of the system components are developed and integrated. Based on the simulation results of the system model, the control variables are identified. The main objective for the control design is to manage fuel, air and exhaust flows in a way to deliver the required load on the system within local constraints. The controller developed for regulating flows in the system is based on model predictive control theory. The performance of the overall control system is assessed through simulations on a nonlinear dynamic model.
X