Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison of Four Modelling Techniques for Thermoelectric Generator

2017-03-28
2017-01-0144
The application of state-of-art thermoelectric generator (TEG) in automotive engine has potential to reduce more than 2% fuel consumption and hence the CO2 emissions. This figure is expected to be increased to 5%~10% in the near future when new thermoelectric material with higher properties is fabricated. However, in order to maximize the TEG output power, there are a few issues need to be considered in the design stage such as the number of modules, the connection of modules, the geometry of the thermoelectric module, the DC-DC converter circuit, the geometry of the heat exchanger especially the hot side heat exchanger etc. These issues can only be investigated via a proper TEG model. The authors introduced four ways of TEG modelling which in the increasing complexity order are MATLB function based model, MATLAB Simscape based Simulink model, GT-power TEG model and CFD STAR-CCM+ model. Both Simscape model and GT-Power model have intrinsic dynamic model performance.
Journal Article

A Drag Coefficient for Test Cycle Application

2018-04-03
2018-01-0742
The drag coefficient at zero yaw angle is the single parameter usually used to define the aerodynamic drag characteristics of a passenger car. However, this is usually the minimum drag condition and will, for example, lead to an underestimate of the effect of aerodynamic drag on fuel consumption because the important influence of the natural wind has been excluded. An alternative measure of aerodynamic drag should take into account the effect of nonzero yaw angles and a variant of wind-averaged drag is suggested as the best option. A wind-averaged drag coefficient (CDW) is usually derived for a particular vehicle speed using a representative wind speed distribution. In the particular case where the road speed distribution is specified, as for a drive cycle to determine fuel economy, a relevant drag coefficient can be derived by using a weighted road speed.
Technical Paper

A Fault-Tolerant Processor Core Architecture for Safety-Critical Automotive Applications

2005-04-11
2005-01-0322
The introduction of drive-by-wire systems into modern vehicles has generated new challenges for the designers of embedded systems. These systems, based primarily on microcontrollers, need to achieve very high levels of reliability and availability, but also have to satisfy the strict cost and packaging constraints of the automotive industry. Advances in VLSI technology have allowed the development of single-chip systems, but have also increased the rate of intermittent and transient faults that come as a result of the continuous shrinkage of the CMOS process feature size. This paper presents a low-cost, fault-tolerant system-on-chip architecture suitable for drive-by-wire and other safety-related applications, based on a triple-modular-redundancy configuration at the processor execution pipeline level.
Technical Paper

A Fuel Cell System Sizing Tool Based on Current Production Aircraft

2017-09-19
2017-01-2135
Electrification of aircraft is on track to be a future key design principal due to the increasing pressure on the aviation industry to significantly reduce harmful emissions by 2050 and the increased use of electrical equipment. This has led to an increased focus on the research and development of alternative power sources for aircraft, including fuel cells. These alternative power sources could either be used to provide propulsive power or as an Auxiliary Power Unit (APU). Previous studies have considered isolated design cases where a fuel cell system was tailored for their specific application. To accommodate for the large variation between aircraft, this study covers the design of an empirical model, which will be used to size a fuel cell system for any given aircraft based on basic design parameters. The model was constructed utilising aircraft categorisation, fuel cell sizing and balance of plant sub-models.
Technical Paper

A Parallel Hybrid Drive System for Small Vehicles: Architecture and Control Systems

2016-04-05
2016-01-1170
The TC48 project is developing a state-of-the-art, exceptionally low cost, 48V Plug-in hybrid electric (PHEV) demonstration drivetrain suitable for electrically powered urban driving, hybrid operation, and internal combustion engine powered high speed motoring. This paper explains the motivation for the project, and presents the layout options considered and the rationale by which these were reduced. The vehicle simulation model used to evaluate the layout options is described and discussed. The modelling work was used in order to support and justify the design choices made. The design of the vehicle's control systems is discussed, presenting simulation results. The physical embodiment of the design is not reported in this paper. The paper describes analysis of small vehicles in the marketplace, including aspects of range and cost, leading to the justification for the specification of the TC48 system.
Technical Paper

A Process Definition Environment for Component Based Manufacturing Machine Control Systems Developed Under the Foresight Vehicle Programme

2002-03-04
2002-01-0468
The COMponent Based Paradigm for AGile Automation (COMPAG) provides a component-based solution to engine production-line machine control systems. The traditional PLC system is replaced with a distributed control network containing intelligent nodes comprising locally controlled actuators and sensors. The Process Definition Environment provides support for the specification, configuration, and maintenance of the machine control application and facilitates both the initial design and maintenance stages of the lifecycle by describing the control logic as a set of consistent timing and state transition diagrams commonly used in the initial design stages.
Journal Article

A Study on the Effect of Debris Location on a Double Element Wing in Ground Effect

2020-04-14
2020-01-0693
Multi-element front wings are essential in numerous motorsport series, such as Formula 1, for the generation of downforce and control of the onset flows to other surfaces and cooling systems. Rubber tyre debris from the soft compounds used in such series can become attached to the wing, reducing downforce, increasing drag and altering the wake characteristics of the wing. This work studies, through force balance and Particle Image Velocimetry (PIV) measurements, the effect a piece of debris has on an inverted double element wing in ground effect. The debris is modelled using a hard-setting putty and is located at different span and chord-wise positions around the wing. The sensitivity to location is studied and the effect on the wake analysed using PIV measurements. The largest effect on downforce was observed when the debris was located on the underside of the wing towards the endplates.
Journal Article

Aerodynamic Drag of Passenger Cars at Yaw

2015-04-14
2015-01-1559
The aerodynamic drag characteristics of a passenger car are typically defined by a single parameter, the drag coefficient at zero yaw angle. While this has been acceptable in the past, it may not allow a true comparison between vehicles with regard to the impact of drag on performance, especially fuel economy. An alternative measure of aerodynamic drag should take into account the effect of non-zero yaw angles and some proposals have been made in the past, including variations of wind-averaged drag coefficient. For almost all cars the drag increases with yaw, but the increase can vary significantly between vehicles. In this paper the effect of various parameters on the drag rise with yaw are considered for a range of different vehicle types. The increase of drag with yaw is shown to be an essentially induced drag, which is strongly dependent on both side force and lift. Shape factors which influence the sensitivity of drag with yaw are discussed.
Technical Paper

Aerodynamic Drag of a Compact SUV as Measured On-Road and in the Wind Tunnel

2002-03-04
2002-01-0529
Growing concerns about the environmental impact of road vehicles will lead to a reduction in the aerodynamic drag for all passenger cars. This includes Sport Utility Vehicles (SUVs) and light trucks which have relatively high drag coefficients and large frontal area. The wind tunnel remains the tool of choice for the vehicle aerodynamicist, but it is important that the benefits obtained in the wind tunnel reflect improvements to the vehicle on the road. Coastdown measurements obtained using a Land Rover Freelander, in various configurations, have been made to determine aerodynamic drag and these have been compared with wind tunnel data for the same vehicle. Repeatability of the coastdown data, the effects of drag variation near to zero yaw and asymmetry in the drag-yaw data on the results from coastdown testing are assessed. Alternative blockage corrections for the wind tunnel measurements are examined.
Technical Paper

Aerodynamic Side Forces on Passenger Cars at Yaw

2016-04-05
2016-01-1620
Side force has an influence on the behaviour of passenger cars in windy conditions. It increases approximately linearly with yaw angle over a significant range of yaw for almost all cars and the side force derivative, (the gradient of side force coefficient with yaw angle), is similar for vehicles of a given category and size. The shape factors and components which affect side force for different vehicle types are discussed. The dominant influence on side force, for most cars, however, is shown to be the vehicle height which is consistent with slender wing theory if the car and its mirror image are considered. This simple theory is shown to apply to 1-box and 2- box shapes, covering most MPVs, hatchbacks and SUVs, but does not adequately represent the side forces on notchback and fastback car shapes. Data from simple bodies is used to develop a modification to the basic theory, which is applied to these vehicle types.
Technical Paper

An Assessment of a Sensor Network Using Bayesian Analysis Demonstrated on an Inlet Manifold

2019-04-02
2019-01-0121
Modern control strategies for internal combustion engines use increasingly complex networks of sensors and actuators to measure different physical parameters. Often indirect measurements and estimation of variables, based off sensor data, are used in the closed loop control of the engine and its subsystems. Thus, sensor fusion techniques and virtual instrumentation have become more significant to the control strategy. With the large volumes of data produced by the increasing number of sensors, the analysis of sensor networks has become more important. Understanding the value of the information they contain and how well it is extracted through uncertainty quantification will also become essential to the development of control architecture. This paper proposes a methodology to quantify how valuable a sensor is relative to the architecture. By modelling the sensor network as a Bayesian network, Bayesian analysis and control metrics were used to assess the value of the sensor.
Technical Paper

An Input Linearized Powertrain Model for the Optimal Control of Hybrid Electric Vehicles

2022-03-29
2022-01-0741
Models of hybrid powertrains are used to establish the best combination of conventional engine power and electric motor power for the current driving situation. The model is characteristic for having two control inputs and one output constraint: the total torque should be equal to the torque requested by the driver. To eliminate the constraint, several alternative formulations are used, considering engine power or motor power or even the ratio between them as a single control input. From this input and the constraint, both power levels can be deduced. There are different popular choices for this one control input. This paper presents a novel model based on an input linearizing transformation. It is demonstrably superior to alternative model forms, in that the core dynamics of the model (battery state of energy) are linear, and the non-linearities of the model are pushed into the inputs and outputs in a Wiener/Hammerstein form.
Journal Article

An Objective Measure for Automotive Surface Contamination

2018-04-03
2018-01-0727
Surface contamination, or soiling, of the exterior of road vehicles can be unsightly, can reduce visibility and customer satisfaction, and, with the increasing application of surface-mounted sensors, can degrade the performance of advanced driver-assistance systems. Experimental methods of evaluating surface contamination are increasingly used in the product development process, but the results are generally subjective. The use of computational methods for predicting contamination makes objective measures possible, but comparable data from experiment is an important validation requirement. This article describes the development of an objective measure of surface contamination arising during experiments. A series of controlled experiments using ultraviolet (UV) dye-doped water are conducted to develop a robust methodology. This process is then applied to a simplified contamination test.
Technical Paper

An Optical Analysis of a DISI Engine Cold Start-Up Strategy

2015-09-01
2015-01-1877
Particulate number (PN) standards in the current ‘Euro 6’ European emissions standards pose a challenge for engine designers and calibrators during the warm-up phases of cold direct injection spark ignition (DISI) engines. To achieve catalyst light-off in the shortest time, engine strategies are often employed which inherently use more fuel to attain higher exhaust temperatures. This can lead to the generation of locally fuel-rich regions within the combustion chamber and the emission of particulates. This investigation analyses the combustion structures during the transient start-up phase of an optical DISI engine. High-speed, colour 9 kHz imaging was used to investigate five important operating points of an engine start-up strategy whilst simultaneously recording in-cylinder pressure.
Technical Paper

Analysis of SI Combustion Diagnostics Methods Using Ion-Current Sensing Techniques

2006-04-03
2006-01-1345
Closed-loop electronic control is a proven and efficient way to optimize spark ignition engine performance and to control pollutant emissions. In-cylinder pressure sensors provide accurate information on the quality of combustion. The conductivity of combustion flames can alternatively be used as a measure of combustion quality through ion-current measurements. In this paper, combustion diagnostics through ion-current sensing are studied. A single cylinder research engine was used to investigate the effects of misfire, ignition timing, air to fuel ratio, compression ratio, speed and load on the ion-current signal. The ion-current signal was obtained via one, or both, of two additional, remote in-cylinder ion sensors (rather than by via the firing spark plug, as is usually the case). The ion-current signals obtained from a single remote sensor, and then the two remote sensors are compared.
Technical Paper

Analytical Evaluation of Fitted Piston Compression Ring: Modal Behaviour and Frictional Assessment

2011-05-17
2011-01-1535
Piston compression rings are thin, incomplete circular structures which are subject to complex motions during a typical 4-stroke internal combustion engine cycle. Ring dynamics comprises its inertial motion relative to the piston, within the confine of its seating groove. There are also elastodynamic modes, such as the ring in-plane motions. A number of modes can be excited, dependent on the net applied force. The latter includes the ring tension and cylinder pressure loading, both of which act outwards on the ring and conform it to the cylinder bore. There is also the radial inward force as the result of ring-bore conjunctional pressure (i.e. contact force). Under transient conditions, the inward and outward forces do not equilibrate, resulting in the small inertial radial motion of the ring.
Technical Paper

Application of Multi-Objective Optimization Techniques for Improved Emissions and Fuel Economy over Transient Manoeuvres

2019-04-02
2019-01-1177
This paper presents a novel approach to augment existing engine calibrations to deliver improved engine performance during a transient, through the application of multi-objective optimization techniques to the calibration of the Variable Valve Timing (VVT) system of a 1.0 litre gasoline engine. Current mature calibration approaches for the VVT system are predominantly based on steady state techniques which fail to consider the engine dynamic behaviour in real world driving, which is heavily transient. In this study the total integrated fuel consumption and engine-out NOx emissions over a 2-minute segment of the transient Worldwide Light-duty Test Cycle are minimised in a constrained multi-objective optimisation framework to achieve an updated calibration for the VVT control. The cycle segment was identified as an area with high NOx emissions.
Technical Paper

Automatic PI Controller Calibration Optimization using Model-Based Calibration Approach

2015-09-01
2015-01-1989
Model-based calibration (MBC) is a systematic method to calibrate an engine control unit (ECU) system. Due to the working principle of MBC, it is only being used for steady-state systems (time independent models). This limits the use of MBC; because an ECU contains statistical and dynamical systems. Due to the limitations of MBC, dynamical systems require manual tuning which may be time-consuming. With the increasing popularity in hybrid and electrical vehicle systems, most of them rely on dynamical systems. Therefore, MBC is about to be superseded by manual parameterization methods. Remarkably, MBC is not limited to the steady state systems. It can be achieved by separating the time factor of a system and extracting the statistical data from a time series measurement. Typically, MBC model is conceived as the representation of a system plant (i.e.: air path, fuel path, mean value engine model). As a matter of fact, MBC model is not limited to identification of system plant.
Technical Paper

BSFC Investigation Using Variable Valve Timing in a Heavy Duty Diesel Engine

2009-04-20
2009-01-1525
Variable valve actuation in heavy duty diesel engines is not well documented, because of diesel engine feature, such as, unthrottled air handling, which gives little room to improve pumping loss; a very high compression ratio, which makes the clearance between the piston and valve small at the top dead center. In order to avoid strike the piston while maximizing the valve movement scope, different strategies are adopted in this paper: (1) While exhaust valve closing is fixed, exhaust valve opening is changed; (2) While exhaust valve closing is fixed, late exhaust valve opening: (3) While inlet valve opening is fixed, inlet valve closing is changed; (4) Delayed Inlet valve and exhaust valve openings and closings; (5) Changing exhaust valve timing; (6) changing inlet valve timing; (7) Changing both inlet and exhaust timing, will be used.
Technical Paper

Benefits of Stochastic Optimisation with Grid Price Prediction for Electric Vehicle Charging

2017-03-28
2017-01-1701
The goal of grid friendly charging is to avoid putting additional load on the electricity grid when it is heavily loaded already, and to reduce the cost of charging to the consumer. In a smart metering system, Day Ahead tariff (DA) prices are announced in advance for the next day. This information can be used for a simple optimization control, to select to charge at cheapest times. However, the balance of supply and demand is not fully known in advance and the Real-Time Prices (RTP) are therefore likely to be different at times. There is always a risk of a sudden price change, hence adding a stochastic element to the optimization in turn requiring dynamic control to achieve optimal time selection. A stochastic dynamic program (SDP) controller which takes this problem into account has been made and proven by simulation in a previous paper.
X