Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

A Vegetable Oil Based Tractor Lubricant

1994-09-01
941758
Increased awareness of preserving the environment has motivated the development of a wide variety of environmentally compatible products. Such products include environmentally compatible lubricants. Sale and use of these types of lubricants illustrates diligence by the lubricant manufacturer, original equipment manufacturer (OEM), and the consumer in contributing to a cleaner environment. The use of this type of lubricant could enhance the image of the lubricant manufacturer and vendor as well as the equipment manufacturer who employs such a fluid. To base such a lubricant on a vegetable oil creates a product environmentally friendly by its farming origin and its ability to readily biodegrade if released. No machinery is so uniquely suited to using vegetable oil based lubricants as agricultural equipment. Since this equipment is particularly close to the environment, the lubricant can easily come in contact with the soil, ground water, and crops.
Technical Paper

ATF Nylon Degradation

1997-05-01
971625
Nylon is used as a material in the design of various components of automatic transmissions. Pump rotor guides and thrust washers are among components designed from nylon. Nylon must be compatible with automatic transmission fluid (ATF). An immersion test using nylon strips in various test fluids was developed. The nylon color change was independent of the physical properties (as measured by change of tensile force) of the material. Testing indicated that nylon color change is catalyzed by oxidation effects, and the change in tensile strength is related to thermal degradation. An automatic transmission fluid (ATF) containing calcium sulfonate detergent showed better oxidation resistance and caused less loss of tensile strength in nylon 6 (PA6).
Technical Paper

Advanced Power-Cylinder Tribology Using A Dynamically Loaded Piston Ring on Cylinder Bore Tribometer

2014-10-13
2014-01-2783
It has long been understood that the piston assembly of the internal combustion engine accounts for a significant proportion of total engine friction. Modern engines are required to have better fuel economy without sacrificing durability. The pursuit of better fuel economy drives trends like downsizing, turbocharging and direct injection fuelling systems that increase cylinder pressures and create a more arduous operating environment for the piston ring / cylinder bore tribocouple. The power-cylinder lubricant is therefore put under increased stress as modern engine technology continues to evolve. The conventional approach to investigating fundamental power-cylinder tribology employs bench-tests founded on assumptions which allow for simplification of experimental conditions.
Technical Paper

Anatomy of an L-37 Hypoid Gear Durability Test Ridging Failure

2012-09-10
2012-01-1669
The ASTM D6121 (L-37) is a key hypoid gear lubricant durability test for ASTM D7450-08 (API Category GL-5) and the higher performance level SAE J2360. It is defined as the ‘Standard Test Method for Evaluation of Load-Carrying Capacity of Lubricants Under Conditions of Low Speed and High Torque Used for Final Hypoid Drive Axles’. Pass/fail is determined upon completion of the test by rating the pinion and ring gears for several types of surface distress, including wear, rippling, ridging, pitting, spalling and scoring. Passing the L-37 in addition to the other tests required for API Category GL-5 credentials, as well as the more strenuous SAE J2360 certification, requires in-depth formulating knowledge to appropriately balance the additive chemistry. This paper describes the results of ASTM D6121 experiments run for the purposes of better understanding gear oil durability.
Technical Paper

Development of Heavy Duty Diesel Real World Drive Cycles for Fuel Economy Measurements

2013-10-14
2013-01-2568
Over several years, a fuel economy test measurement technique has been developed to highlight the magnitude of benefits expected in real world applications of different heavy-duty vehicle (HDV) engine oils in an operating vehicle. This method provides discriminatory results using an alternative to the widely used gravimetric fuel measurement methodology of Brake Specific Fuel Consumption (BSFC), in order to measure gains of <2% in a more repeatable manner. For the results to prove meaningful to the wider commercial audience, such as vehicle operators, original equipment manufacturers and oil providers, the systemic test vehicle operating conditions need to closely represent on-road conditions experienced on a daily basis by long haul, heavy duty diesel vehicles. This paper describes the parameters, necessary measures and methodologies required to record real world data and create representative proving ground test cycles.
Technical Paper

Effects of Exhaust Gas Recirculation on the Degradation Rates of Lubricating Oil in a Heavy-Duty Diesel Engine

1999-10-25
1999-01-3574
The specific goal of this project was to determine if there is a difference in the lube oil degradation rates in a heavy-duty diesel engine equipped with an EGR system, as compared to the same configuration of the engine, but minus the EGR system. A secondary goal was to develop FTIR analysis of used lube oil as a sensitive technique for rapid evaluation of the degradation properties of lubricants. The test engine selected for this work was a Caterpillar 3176 engine. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to meet the 2004 emissions standards. The most significant changes in the lubricant occurred during the first 50-100 hours of operation. The results clearly demonstrated that the use of EGR has a significant impact on the degradation of the engine lubricant.
Journal Article

Extending SAE J300 to Viscosity Grades below SAE 20

2010-10-25
2010-01-2286
The SAE Engine Oil Viscosity Classification (EOVC) Task Force has been gathering data in consideration of extending SAE J300 to include engine oils with high temperature, high shear rate (HTHS) viscosity below the current minimum of 2.6 mPa⋅s for the SAE 20 grade. The driving force for doing so is fuel economy, although it is widely recognized that hardware durability can suffer if HTHS viscosity is too low. Several Japanese OEMs have expressed interest in revising SAE J300 to allow official designation of an engine oil viscosity category with HTHS viscosity below 2.6 mPa⋅s to enable the development of ultra-low-friction engines in the future. This paper summarizes the work of the SAE EOVC Low Viscosity Grade Working Group comprising members from OEMs, oil companies, additive companies and instrument manufacturers to explore adoption of one or more new viscosity grades.
Technical Paper

Fundamental Studies on ATF Friction I.

1997-05-01
971621
Automatic transmission clutches are complex tribological systems. Frictional performance is controlled by the interaction of base fluids, additive components, composition clutches, and steel reaction plates with varying energy inputs and thermal stresses in an oxidizing environment. This paper, rather than addressing fully formulated fluid performance in such a system, takes a more fundamental approach where the number of system variables is reduced and the relative effects of formulation variables on system performance can be better examined. Relationships among observed friction performance, system oxidation, friction member condition, and representative performance additives are explored using a synthetic base fluid and a conventionally refined mineral base fluid.
Journal Article

Impact of Viscosity Modifiers on Gear Oil Efficiency and Durability: Part II

2013-04-08
2013-01-0299
This paper outlines the second part in a series on the effect of polymeric additives commonly known as viscosity modifiers (VM) or viscosity index improvers (VII) on gear oil efficiency and durability. The main role of the VM is to improve cold temperature lubrication and reduce the rate of viscosity reduction as the gear oil warms to operating temperature. However, in addition to improved operating efficiency across a broad temperature range compared to monograde fluids the VM can impart a number of other significant rheological improvements to the fluid [1]. This paper expands on the first paper in the series [2], covering further aspects in fluid efficiency, the effect of VM chemistry on these and their relationship to differences in hypoid and spur gear rig efficiency testing. Numerous VM chemistry types are available and the VM chemistry and shear stability is key to fluid efficiency and durability.
Technical Paper

Test Techniques for the Evaluation of Lubricant Effects on Axle Break-In Temperature-Investigation of Test Techniques with a Domestic (USA) Sedan

1976-02-01
760328
High lubricant temperatures generated during the break-in of new differential assemblies has been of concern among original equipment manufacturers (OEM's). Many tests have been devised to measure the effects of speed, load and lubricant on the temperature generated in the axle. The major problem confronting the use of these tests has been a lack of repeatability and/or reproducibility. Recently, a European OEM axle lubricant break-in test procedure using a European sedan test vehicle has demonstrated highly repeatable and reproducible results. Test work had been limited to the European sedan. The applicability of the European OEM test procedure to a larger domestic U.S. vehicle was questioned. This paper discusses the applicability of the European test to a domestic sedan. Additionally, two other axle break-in test procedures were conducted using the same domestic sedan test vehicle. Three sulfur-phosphorus multi-purpose gear lubricants were evaluated.
X