Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Vegetable Oil Based Tractor Lubricant

1994-09-01
941758
Increased awareness of preserving the environment has motivated the development of a wide variety of environmentally compatible products. Such products include environmentally compatible lubricants. Sale and use of these types of lubricants illustrates diligence by the lubricant manufacturer, original equipment manufacturer (OEM), and the consumer in contributing to a cleaner environment. The use of this type of lubricant could enhance the image of the lubricant manufacturer and vendor as well as the equipment manufacturer who employs such a fluid. To base such a lubricant on a vegetable oil creates a product environmentally friendly by its farming origin and its ability to readily biodegrade if released. No machinery is so uniquely suited to using vegetable oil based lubricants as agricultural equipment. Since this equipment is particularly close to the environment, the lubricant can easily come in contact with the soil, ground water, and crops.
Technical Paper

Effects of Exhaust Gas Recirculation on the Degradation Rates of Lubricating Oil in a Heavy-Duty Diesel Engine

1999-10-25
1999-01-3574
The specific goal of this project was to determine if there is a difference in the lube oil degradation rates in a heavy-duty diesel engine equipped with an EGR system, as compared to the same configuration of the engine, but minus the EGR system. A secondary goal was to develop FTIR analysis of used lube oil as a sensitive technique for rapid evaluation of the degradation properties of lubricants. The test engine selected for this work was a Caterpillar 3176 engine. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to meet the 2004 emissions standards. The most significant changes in the lubricant occurred during the first 50-100 hours of operation. The results clearly demonstrated that the use of EGR has a significant impact on the degradation of the engine lubricant.
Journal Article

Field and Bench Study of Shear Stability of Heavy Duty Diesel Lubricants

2014-10-13
2014-01-2791
Global environmental and economic concerns of today's world dictate strict requirements for modern heavy duty engines, especially in emissions, noise control, power generation, and extended oil drain intervals. These requirements lead to increased stresses imposed on lubricants in modern heavy duty engines. At the same time, the original equipment manufacturers (OEMs) desire additional fuel economy from the lubricating oil, requiring the use of lower viscosity lubricants to minimize frictional losses in the engine. These lower viscosity oils are subjected to increased stresses in the engine and need to provide robust performance throughout their lifetime in order to protect engine parts from wear and damage. One of the most important lubricant qualities is to maintain viscosity throughout the drain interval and thus provide continuous engine protection.
Technical Paper

Next Generation Diblock Viscosity Modifier for Heavy Duty Diesel Engine Lubricants

2016-10-17
2016-01-2315
An unprecedented global focus on the environment and greenhouse gases has driven recent government regulations on automotive emissions across the globe. To achieve this improvement, Original Equipment Manufacturers (OEMs) have advocated a progressive move towards the use of low viscosity grade oils. However, the use of lower viscosity grades should not compromise engine durability or wear protection. Viscosity modifiers (VM) - polymeric additive components used to tailor the lubricant’s viscometric properties - have been viewed as a key enabler for achieving the desirable balance between fuel economy and engine durability performance. Self-assembling diblock copolymers represent a unique class of VMs, which deliver superior shear stability due to their tunable association/dissociation in the lubricating oil. Superior shear stability ensures that the oil viscosity and its ability to offer reliable engine protection from wear is retained over the life of the oil in the engine.
Journal Article

The Effect of Low Viscosity Oil on the Wear, Friction and Fuel Consumption of a Heavy Duty Truck Engine

2013-04-08
2013-01-0331
This paper describes the results of a series of tests on a heavy-duty truck diesel engine using conventional and low viscosity lubricants. The objectives were to explore the impact of reducing lubricant viscosity on wear, friction and fuel consumption. The radiotracing Thin Layer Activation method was used to make on-line measurements of wear at the cylinder liner, top piston ring, connecting rod small end bush and intake cam lobe. The engine was operated under a wide range of conditions (load, speed and temperature) and with lubricants of several different viscosity grades. Results indicate the relationship between lubricant viscosity and wear at four critical locations. Wear at other locations was assessed by analysis of wear metals and post test inspection. The fuel consumption was then measured on the same engine with the same lubricants. Results indicate the relationship between oil viscosity and fuel consumption under a wide range of operating conditions.
X