Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Comparative Assessment of Alternative Powertrains and Body-in-White Materials for Advanced Technology Vehicles

2004-03-08
2004-01-0573
The affordability of today's and future advanced technology vehicles (i.e., diesel, hybrid, and fuel cell) developed for improved fuel economy remains a concern with respect to final consumer acceptance. The automotive system cost model (ASCM) developed for the production cost estimates at a level of five major subsystems and 35+ components, has been used here to address the affordability issue of advanced technology vehicles. Scenarios encompassing five alternative powertrain and three body options for a mid-size vehicle under two different timeframes (i.e., 2002 and 2010) were considered to determine the cost-effectiveness of among the competing technology options within the same timeframe and between the two timeframes.
Technical Paper

A Copper-Lead Bearing Corrosion Test Replacement

1997-05-01
971623
The Cooperative Lubrication Research (CLR) Oil Test Engine, usually called the L-38, has been used for nearly 25 years to evaluate copper-lead journal bearing protection of gasoline rnotoroils under high-temperature, heavy-duty conditions. The test is sensitive to aggressive surface active additives that may encourage bearing corrosion. The L-38 also provides an estimate of oil durability, assessing the resistance of an oil to the accumulation of acidic by-products of combustion that could attack copper-lead bearings. However, the L-38 engine dynamometer test uses a heavily leaded gasoline that is no longer representative of the commercial fuels available in North America, Europe, or Japan. Rather than discard the L-38, this paper describes work to modify the L-38 procedure to run with unleaded gasoline.
Technical Paper

A Current Source Inverter Based Motor Drive for EV/HEV Applications

2011-04-12
2011-01-0346
The voltage source inverter (VSI) possesses several drawbacks that make it difficult to meet the requirements of automotive applications for inverter volume, lifetime, and cost. The VSI requires a very high performance dc bus capacitor that is costly and bulky. Other characteristics of the VSI not only negatively impact its own reliability but also that of the motor as well as motor efficiency. These problems could be eliminated or significantly mitigated by the use of the current source inverter (CSI). The CSI doesn't require any dc bus capacitors but uses three small ac filter capacitors and an inductor as the energy storage component, thus avoiding many of the drawbacks of the VSI. The CSI offers several inherent advantages that could translate into a substantial reduction in inverter cost and volume, increased reliability, a much higher constant-power speed range, and improved motor efficiency and lifetime.
Technical Paper

A Hybrid 2-Zone/WAVE Engine Combustion Model for Simulating Combustion Instabilities During Dilute Operation

2005-10-24
2005-01-3801
Internal combustion engines are operated under conditions of high exhaust gas recirculation (EGR) to reduce NOx emissions and promote enhanced combustion modes such as HCCI. However, high EGR under certain conditions also promotes nonlinear feedback between cycles, leading to the development of combustion instabilities and cyclic variability. We employ a two-zone phenomenological combustion model to simulate the onset of combustion instabilities under highly dilute conditions and to illustrate the impact of these instabilities on emissions and fuel efficiency. The two-zone in-cylinder combustion model is coupled to a WAVE engine-simulation code through a Simulink interface, allowing rapid simulation of several hundred successive engine cycles with many external engine parametric effects included.
Technical Paper

A Modeling Study of SCR Reaction Kinetics from Reactor Experiments

2013-04-08
2013-01-1576
In order to further characterize and optimize the performance of Selective Catalytic Reduction (SCR) aftertreatment systems used on heavy-duty diesel engines, an accurately calibrated high-fidelity multi-step global kinetic SCR model and a reduced order estimator for on-board diagnostic (OBD) and control are desirable. In this study, a Cu-zeolite SCR catalyst from a 2010 Cummins ISB engine was experimentally studied in a flow reactor using carefully designed protocols. A 2-site SCR model describing mass transfer and the SCR chemical reaction mechanisms is described in the paper. The model was calibrated to the reactor test data sets collected under temperatures from 200 to 425 °C and SCR space velocities of 60000, 90000, and 120000 hr-1. The model parameters were calibrated using an optimization code to minimize the error between measured and simulated NO, NO₂, N₂O, and NH₃ gas concentration time histories.
Technical Paper

A Novel Capability for Crush Testing Crash Energy Management Structures at Intermediate Rates

2002-06-03
2002-01-1954
The crush performance of lightweight composite automotive structures varies significantly between static and dynamic test conditions. This paper discusses the development of a new dynamic testing facility that can be used to characterize crash performance at high loads and constant speed. Previous research results from the Energy Management Working Group (EMWG) of the Automotive Composites Consortium (ACC) showed that the static crush resistance of composite tubes can be significantly greater than dynamic crush results at speeds greater than 2 m/s. The new testing facility will provide the unique capability to crush structures at high loads in the intermediate velocity range. A novel machine control system was designed and projections of the machine performance indicate its compliance with the desired test tolerances. The test machine will be part of a national user facility at the Oak Ridge National Laboratory (ORNL) and will be available for use in the summer of 2002.
Journal Article

A Preliminary Investigation into the Mitigation of Plug-in Hybrid Electric Vehicle Tailpipe Emissions Through Supervisory Control Methods

2010-04-12
2010-01-1266
Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, possibly at the expense of increased tailpipe emissions due to multiple “cold” start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events may have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts.
Technical Paper

A Soft-Switched DC/DC Converter for Fuel Cell Vehicle Applications*

2002-06-03
2002-01-1903
Fuel cell-powered electric vehicles (FCPEV) require an energy storage device to start up the fuel cells and to store the energy captured during regenerative braking. Low-voltage (12 V) batteries are preferred as the storage device to maintain compatibility with the majority of today's automobile loads. A dc/dc converter is therefore needed to interface the low-voltage batteries with the fuel cell-powered higher-voltage dc bus system (255 V ∼ 425 V), transferring energy in either direction as required. This paper presents a soft-switched, isolated bi-directional dc/dc converter developed at Oak Ridge National Laboratory for FCPEV applications. The converter employs dual half-bridges interconnected with an isolation transformer to minimize the number of switching devices and their associated gate drive requirements. Snubber capacitors including the parasitic capacitance of the switching devices and the transformer leakage inductance are utilized to achieve zero-voltage switching (ZVS).
Technical Paper

A Vegetable Oil Based Tractor Lubricant

1994-09-01
941758
Increased awareness of preserving the environment has motivated the development of a wide variety of environmentally compatible products. Such products include environmentally compatible lubricants. Sale and use of these types of lubricants illustrates diligence by the lubricant manufacturer, original equipment manufacturer (OEM), and the consumer in contributing to a cleaner environment. The use of this type of lubricant could enhance the image of the lubricant manufacturer and vendor as well as the equipment manufacturer who employs such a fluid. To base such a lubricant on a vegetable oil creates a product environmentally friendly by its farming origin and its ability to readily biodegrade if released. No machinery is so uniquely suited to using vegetable oil based lubricants as agricultural equipment. Since this equipment is particularly close to the environment, the lubricant can easily come in contact with the soil, ground water, and crops.
Technical Paper

A Waste Heat Recovery System for Light Duty Diesel Engines

2010-10-25
2010-01-2205
In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 45%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.
Journal Article

Achieving Diesel Powertrain Ownership Parity in Battery Electric Heavy Duty Commercial Vehicles Using a Rapid Recurrent Recharging Architecture

2022-03-29
2022-01-0751
Battery electric vehicles (BEV) in heavy duty (HD) commercial freight transport face challenging technoeconomic barriers to adoption. Specifically, beyond safety and compliance, fleet and operational logistics require both high up-time and parity with diesel system productivity/Total Cost of Ownership (TCO) to enable strong adoption of electrified powertrains. At present, relatively high energy storage prices coupled with the increased weight of BEV systems limit the practicality of HD commercial freight transport to shorter range applications, where smaller batteries will suffice for the mission energy requirements (single operational shift). This paper presents an approach to extend the feasibility of BEV HD trucking for a broad range of applications.
Journal Article

Advanced Intra-Cycle Detection of Pre-Ignition Events through Phase-Space Transforms of Cylinder Pressure Data

2020-09-15
2020-01-2046
The widespread adoption of boosted, downsized SI engines has brought pre-ignition phenomena into greater focus, as the knock events resulting from pre-ignitions can cause significant hardware damage. Much attention has been given to understanding the causes of pre-ignition and identify lubricant or fuel properties and engine design and calibration considerations that impact its frequency. This helps to shift the pre-ignition limit to higher specific loads and allow further downsizing but does not fundamentally eliminate the problem. Real-time detection and mitigation of pre-ignition would thus be desirable to allow safe engine operation in pre-ignition-prone conditions. This study focuses on advancing the time of detection of pre-ignition in an engine cycle where it occurs.
Technical Paper

Advanced Materials Characterization at the High Temperature Materials Laboratory

1999-04-28
1999-01-2256
The HTML (High Temperature Materials Laboratory) is a U.S. Department of Energy User Facility, offering opportunities for in-depth characterization of advanced materials, specializing in high-temperature-capable structural ceramics. Available are electron microscopy for micro-structural and microchemical analysis, equipment for measurement of the thermophysical and mechanical properties of ceramics to elevated temperatures, X-ray and neutron diffraction for structure and residual stress analysis, and high speed grinding machines with capability for measurement of component shape, tolerances, surface finish, and friction and wear properties. This presentation will focus on structural materials characterization, illustrated with examples of work performed on heat engine materials such as silicon nitride, industrial refractories, metal-and ceramic-matrix composites, and structural alloys.
Technical Paper

Advanced Power-Cylinder Tribology Using A Dynamically Loaded Piston Ring on Cylinder Bore Tribometer

2014-10-13
2014-01-2783
It has long been understood that the piston assembly of the internal combustion engine accounts for a significant proportion of total engine friction. Modern engines are required to have better fuel economy without sacrificing durability. The pursuit of better fuel economy drives trends like downsizing, turbocharging and direct injection fuelling systems that increase cylinder pressures and create a more arduous operating environment for the piston ring / cylinder bore tribocouple. The power-cylinder lubricant is therefore put under increased stress as modern engine technology continues to evolve. The conventional approach to investigating fundamental power-cylinder tribology employs bench-tests founded on assumptions which allow for simplification of experimental conditions.
Journal Article

Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

2016-04-05
2016-01-0934
Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCR approach is of interest. In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst.
Journal Article

Ammonia Generation over TWC for Passive SCR NOX Control for Lean Gasoline Engines

2014-04-01
2014-01-1505
A commercial three-way catalyst (TWC) was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential low cost approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. NH3 generation was evaluated at different air-fuel equivalence ratios at multiple engine speed and load conditions. Near complete conversion of NOX to NH3 was achieved at λ=0.96 for nearly all conditions studied. At the λ=0.96 condition, HC emissions were relatively minimal, but CO emissions were significant.
Technical Paper

An Optical Backscatter Sensor for Particulate Matter Measurement

2009-04-20
2009-01-0687
An optical-based sensor for detecting particulate matter (PM) in diesel engine exhaust has been demonstrated. The position of the sensor during the experiments was the exhaust manifold prior to the turbocharger. The sensor is constructed of fiber optics which transmit 532-nm laser light into the exhaust pipe and collect backscattered light in a 180° geometry. Due to the optical nature of the probe, PM sensing can occur at high temporal rates. Experiments conducted by changing the fuel injection properties of one cylinder of a four cylinder engine demonstrated that the sensor can resolve cycle dependent events. The feasibility of the probe for examining PM emissions in the exhaust manifold will be discussed.
Technical Paper

Analysis of Real-World Preignition Data Using Neural Networks

2023-10-31
2023-01-1614
1Increasing adoption of downsized, boosted, spark-ignition engines has improved vehicle fuel economy, and continued improvement is desirable to reduce carbon emissions in the near-term. However, this strategy is limited by damaging preignition events which can cause hardware failure. Research to date has shed light on various contributing factors related to fuel and lubricant properties as well as calibration strategies, but the causal factors behind an individual preignition cycle remain elusive. If actionable precursors could be identified, mitigation through active control strategies would be possible. This paper uses artificial neural networks to search for identifiable precursors in the cylinder pressure data from a large real-world data set containing many preignition cycles. It is found that while follow-up preignition cycles in clusters can be readily predicted, the initial preignition cycle is not predictable based on features of the cylinder pressure.
Journal Article

Analysis of Residual Stress Profiles in the Cylinder Web Region of an As-Cast V6 Al Engine Block with Cast-In Fe Liners Using Neutron Diffraction

2011-04-12
2011-01-0036
Continuous efforts to develop a lightweight alloy suitable for the most demanding applications in automotive industry resulted in a number of advanced aluminum (Al) and magnesium alloys and manufacturing routes. One example of this is the application of 319 Al alloy for production of 3.6L V6 gasoline engine blocks. Aluminum is sand cast around Fe-liner cylinder inserts, prior to undergoing the T7 heat treatment process. One of the critical factors determining the quality of the final product is the type, level, and profile of residual stresses along the Fe liners (or extent of liner distortion) that are always present in a cast component. In this study, neutron diffraction was used to characterize residual stresses along the Al and the Fe liners in the web region of the cast engine block. The strains were measured both in Al and Fe in hoop, radial, and axial orientations. The stresses were subsequently determined using generalized Hooke's law.
Journal Article

Analytical Examination of the Relationship between Fuel Properties, Engine Efficiency, and R Factor Values

2019-04-02
2019-01-0309
The variability in gasoline energy content, though most frequently not a consumer concern, is an issue of concern for vehicle manufacturers in demonstrating compliance with regulatory requirements. Advancements in both vehicle technology, test methodology, and fuel formulations have increased the level of visibility and concern with regard to the energy content of fuels used for regulatory testing. The R factor was introduced into fuel economy calculations for vehicle certification in the late 1980s as a means of addressing batch-to-batch variations in the heating value of certification fuels and the resulting variations in fuel economy results. Although previous studies have investigated values of the R factor for modern vehicles through experimentation, subsequent engine studies have made clear that it is difficult to distinguish between the confounding factors that influence engine efficiency when R is being studied experimentally.
X