Refine Your Search

Topic

Author

Search Results

Technical Paper

A Copper-Lead Bearing Corrosion Test Replacement

1997-05-01
971623
The Cooperative Lubrication Research (CLR) Oil Test Engine, usually called the L-38, has been used for nearly 25 years to evaluate copper-lead journal bearing protection of gasoline rnotoroils under high-temperature, heavy-duty conditions. The test is sensitive to aggressive surface active additives that may encourage bearing corrosion. The L-38 also provides an estimate of oil durability, assessing the resistance of an oil to the accumulation of acidic by-products of combustion that could attack copper-lead bearings. However, the L-38 engine dynamometer test uses a heavily leaded gasoline that is no longer representative of the commercial fuels available in North America, Europe, or Japan. Rather than discard the L-38, this paper describes work to modify the L-38 procedure to run with unleaded gasoline.
Technical Paper

A Vegetable Oil Based Tractor Lubricant

1994-09-01
941758
Increased awareness of preserving the environment has motivated the development of a wide variety of environmentally compatible products. Such products include environmentally compatible lubricants. Sale and use of these types of lubricants illustrates diligence by the lubricant manufacturer, original equipment manufacturer (OEM), and the consumer in contributing to a cleaner environment. The use of this type of lubricant could enhance the image of the lubricant manufacturer and vendor as well as the equipment manufacturer who employs such a fluid. To base such a lubricant on a vegetable oil creates a product environmentally friendly by its farming origin and its ability to readily biodegrade if released. No machinery is so uniquely suited to using vegetable oil based lubricants as agricultural equipment. Since this equipment is particularly close to the environment, the lubricant can easily come in contact with the soil, ground water, and crops.
Technical Paper

ATF Nylon Degradation

1997-05-01
971625
Nylon is used as a material in the design of various components of automatic transmissions. Pump rotor guides and thrust washers are among components designed from nylon. Nylon must be compatible with automatic transmission fluid (ATF). An immersion test using nylon strips in various test fluids was developed. The nylon color change was independent of the physical properties (as measured by change of tensile force) of the material. Testing indicated that nylon color change is catalyzed by oxidation effects, and the change in tensile strength is related to thermal degradation. An automatic transmission fluid (ATF) containing calcium sulfonate detergent showed better oxidation resistance and caused less loss of tensile strength in nylon 6 (PA6).
Technical Paper

Advanced Power-Cylinder Tribology Using A Dynamically Loaded Piston Ring on Cylinder Bore Tribometer

2014-10-13
2014-01-2783
It has long been understood that the piston assembly of the internal combustion engine accounts for a significant proportion of total engine friction. Modern engines are required to have better fuel economy without sacrificing durability. The pursuit of better fuel economy drives trends like downsizing, turbocharging and direct injection fuelling systems that increase cylinder pressures and create a more arduous operating environment for the piston ring / cylinder bore tribocouple. The power-cylinder lubricant is therefore put under increased stress as modern engine technology continues to evolve. The conventional approach to investigating fundamental power-cylinder tribology employs bench-tests founded on assumptions which allow for simplification of experimental conditions.
Technical Paper

An Investigation of Long and Short Duration Tests for Evaluating Engine Non-Starts caused by CCD Flaking

2003-05-19
2003-01-2014
Two engine dynamometer test protocols are compared for their ability to discriminate and duplicate the field phenomenon of engine non-start due to combustion chamber deposit (CCD) flaking. The first, a protocol based on a 625 hour deposit accumulation cycle, has been shown in prior work [1, 2] to reflect field experience and discriminate the effects of various fuel additive treatments. The second, a protocol based on a 60 hour deposit accumulation cycle, was developed in an attempt to significantly reduce the time, and thus cost, of testing. Results indicate the shorter protocol is repeatable and has similar discrimination with respect to fuel and fuel additive impact on the no-start phenomenon. There are, however, differences in the results that indicate there may be a severity difference between the tests. The tests both show there are clearly differences in the engine no-start impact of deposits formed by fuel and additives.
Technical Paper

Anatomy of an L-37 Hypoid Gear Durability Test Ridging Failure

2012-09-10
2012-01-1669
The ASTM D6121 (L-37) is a key hypoid gear lubricant durability test for ASTM D7450-08 (API Category GL-5) and the higher performance level SAE J2360. It is defined as the ‘Standard Test Method for Evaluation of Load-Carrying Capacity of Lubricants Under Conditions of Low Speed and High Torque Used for Final Hypoid Drive Axles’. Pass/fail is determined upon completion of the test by rating the pinion and ring gears for several types of surface distress, including wear, rippling, ridging, pitting, spalling and scoring. Passing the L-37 in addition to the other tests required for API Category GL-5 credentials, as well as the more strenuous SAE J2360 certification, requires in-depth formulating knowledge to appropriately balance the additive chemistry. This paper describes the results of ASTM D6121 experiments run for the purposes of better understanding gear oil durability.
Technical Paper

Automatic Transmission and Driveline Fluids*

2007-10-29
2007-01-3988
This paper provides an overview of driveline fluids, in particular automatic transmission fluids (ATFs), and is intended to be a general reference for those working with such fluids. Included are an introduction to driveline fluids, highlighting what sets them apart from other lubricants, a history of ATF development, a description of key physical ATF properties and a comparison of ATF fluid specifications. Also included are descriptions of the chemical composition of such fluids and the commonly used basestocks. A section is included on how to evaluate used driveline oils, describing common test methods and some comments on interpreting the test results. Finally the future direction of driveline fluid development is discussed. A glossary of terms is included at the end.
Journal Article

Challenging Conventional Wisdom by Utilizing Group II Base Oils in Fuel Efficient Axle Oils

2017-10-08
2017-01-2356
Improving vehicle fuel economy is a major consideration for original equipment manufacturers (OEMs) and their technology suppliers worldwide as government legislation increasingly limits carbon dioxide emissions. At the same time that automotive OEMs have been driving toward lower viscosity axle oils to improve fuel economy, OEMs have worked to improved durability over an extended drain interval. These challenges have driven the use of API group III and/or API group IV base oils in most factory fill axle oils. This paper details the development of a novel lower viscosity SAE 75W-85 axle technology based on group II base oil that rivals the performance of a PAO-based axle oil and challenges the conventional wisdom of not using group II base oils in fuel efficient axle oils.
Technical Paper

Correlating Laboratory Oil Aerosol Coking Rig Tests to Diesel Engine Tests to Understand the Mechanisms Responsible for Turbocharger Compressor Coking

2017-03-28
2017-01-0887
Deposit formation within turbocharger compressor housings can lead to compressor efficiency degradation. This loss of turbo efficiency may degrade fuel economy and increase CO2 and NOx emissions. To understand the role that engine oil composition and formulation play in deposit formation, five different lubricants were run in a fired engine test while monitoring turbocharger compressor efficiency over time. Base stock group, additive package, and viscosity modifier treat rate were varied in the lubricants tested. After each test was completed the turbocharger compressor cover and back plate deposits were characterized. A laboratory oil mist coking rig has also been constructed, which generated deposits having the same characteristics as those from the engine tests. By analyzing results from both lab and engine tests, correlations between deposit characteristics and their effect on compressor efficiency were observed.
Technical Paper

Development and Introduction of Chrysler's New Automatic Transmission Fluid

1998-10-19
982674
Chrysler began a limited development program directed toward a new automatic transmission fluid (ATF) early in 1989 and launched a full time effort in 1994. The development process for the new ATF involved a significant level of bench testing and eventually vehicle tests to evaluate the durability and shift quality of the ATF. The bench tests included those that pertain to oxidation and shear stability, anti-wear, frictional properties and torque converter shudder. Vehicle tests were primarily extended durability in both internal vehicle fleets and at external taxi sites. The mileage accumulated in this phase of the development program exceeded two million miles, all with no fluid drains out to 100,000 miles. Additionally, shift feel tests were conducted in Chrysler vehicles to verify compliance to targets. This paper summarizes the tests and results that lead to the development of the new Chrysler fill-for-life automatic transmission fluid.
Technical Paper

Development of Heavy Duty Diesel Real World Drive Cycles for Fuel Economy Measurements

2013-10-14
2013-01-2568
Over several years, a fuel economy test measurement technique has been developed to highlight the magnitude of benefits expected in real world applications of different heavy-duty vehicle (HDV) engine oils in an operating vehicle. This method provides discriminatory results using an alternative to the widely used gravimetric fuel measurement methodology of Brake Specific Fuel Consumption (BSFC), in order to measure gains of <2% in a more repeatable manner. For the results to prove meaningful to the wider commercial audience, such as vehicle operators, original equipment manufacturers and oil providers, the systemic test vehicle operating conditions need to closely represent on-road conditions experienced on a daily basis by long haul, heavy duty diesel vehicles. This paper describes the parameters, necessary measures and methodologies required to record real world data and create representative proving ground test cycles.
Technical Paper

Development of a Laboratory Hypoid Gear Spalling Test

1997-11-17
973252
The laboratory tests used to define API GL5 have been the cornerstone of gear oil development for well over thirty years. In that time they have served the market very well. Lubricants developed with these test methods have provided adequate protection of axle components from severe wear, scuffing, corrosion, and oxidation. Recently, however, there has been an increasing trend toward extended drain intervals which changes the picture. Coupled with longer oil drain intervals there is a continuing increase of power throughput in the equipment. The combination of increased power and extended service life places significant stress on the oil such that the load carrying ability and thermal and oxidative stability could be greatly diminished under these conditions. During the past ten years the industry has been actively working toward a new gear oil specification that will address the performance needs of today's vehicles.
Technical Paper

Diesel Engine Oil Consumption Studies

1974-02-01
740525
An oil consumption test procedure has been developed in a 6-cyl, 425 hp, turbocharged and after-cooled diesel engine. Tests conducted on reference oils agree with good and poor oil consumption characteristics found with these same oils in the field. This paper includes evaluations using the engine test procedure as well as various laboratory bench tests which measure the effects of viscosity, volatility, and oxidation stability. Both bench and engine test results indicate that traditional properties, such as viscosity and volatility, do not completely account for variations in oil consumption. The data indicate that the problam of obtaining low diesel engine oil consumption may involve a complex combination of factors.
Technical Paper

Effects of Exhaust Gas Recirculation on the Degradation Rates of Lubricating Oil in a Heavy-Duty Diesel Engine

1999-10-25
1999-01-3574
The specific goal of this project was to determine if there is a difference in the lube oil degradation rates in a heavy-duty diesel engine equipped with an EGR system, as compared to the same configuration of the engine, but minus the EGR system. A secondary goal was to develop FTIR analysis of used lube oil as a sensitive technique for rapid evaluation of the degradation properties of lubricants. The test engine selected for this work was a Caterpillar 3176 engine. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to meet the 2004 emissions standards. The most significant changes in the lubricant occurred during the first 50-100 hours of operation. The results clearly demonstrated that the use of EGR has a significant impact on the degradation of the engine lubricant.
Journal Article

Extending SAE J300 to Viscosity Grades below SAE 20

2010-10-25
2010-01-2286
The SAE Engine Oil Viscosity Classification (EOVC) Task Force has been gathering data in consideration of extending SAE J300 to include engine oils with high temperature, high shear rate (HTHS) viscosity below the current minimum of 2.6 mPa⋅s for the SAE 20 grade. The driving force for doing so is fuel economy, although it is widely recognized that hardware durability can suffer if HTHS viscosity is too low. Several Japanese OEMs have expressed interest in revising SAE J300 to allow official designation of an engine oil viscosity category with HTHS viscosity below 2.6 mPa⋅s to enable the development of ultra-low-friction engines in the future. This paper summarizes the work of the SAE EOVC Low Viscosity Grade Working Group comprising members from OEMs, oil companies, additive companies and instrument manufacturers to explore adoption of one or more new viscosity grades.
Technical Paper

FC-W®: An Oil Standard for Four-Stroke Cycle Outboard Engines

2004-09-27
2004-32-0025
The Oil Certification Committee of the National Marine Manufacturers Association has developed FC-W®, a new standard for crankcase lube oil used in four-stroke cycle inboard, outboard, and sterndrive marine engines. A sub-committee representing the marine engine industry, the oil industry, oil testing laboratories, and the NMMA engineering standards group was formed to study the lubrication and corrosion prevention needs of four-stroke cycle engines. The sub-committee developed a rust test and an engine test as well as adopting 3 industry standard bench tests. These tests, together with formulation restrictions are used to identify oils that meet the requirements for use in four-stroke cycle marine engines. This paper gives an overview of the development of the new tests, formulation restrictions, and product approval system.
Journal Article

Impact of Viscosity Modifiers on Gear Oil Efficiency and Durability: Part II

2013-04-08
2013-01-0299
This paper outlines the second part in a series on the effect of polymeric additives commonly known as viscosity modifiers (VM) or viscosity index improvers (VII) on gear oil efficiency and durability. The main role of the VM is to improve cold temperature lubrication and reduce the rate of viscosity reduction as the gear oil warms to operating temperature. However, in addition to improved operating efficiency across a broad temperature range compared to monograde fluids the VM can impart a number of other significant rheological improvements to the fluid [1]. This paper expands on the first paper in the series [2], covering further aspects in fluid efficiency, the effect of VM chemistry on these and their relationship to differences in hypoid and spur gear rig efficiency testing. Numerous VM chemistry types are available and the VM chemistry and shear stability is key to fluid efficiency and durability.
Technical Paper

Improved Lubricants Extend Diesel Engine Life

1985-11-11
852178
Diesel engine oils containing a balanced additive package composed of oxidation, corrosion, wear, rust and foam inhibitors plus ashless dispersants and metallic detergents provide long engine life. The major factor is metallic detergent component which contributes alkalinity to the oil and has a direct effect on engine cleanliness and durability. Increased detergent alkalinity reduces deposits and wear, resulting in improved oil control and longer engine life. Careful selection of detergent components is required to control cylinder-bore polishing in diesel engines to assure optimum antiwear and oil control performance.
Technical Paper

In-Situ Measurement of Holistic Powertrain Efficiency in Vehicles

2018-04-03
2018-01-0324
Conventional methods for determining automotive powertrain efficiency include (1) component-level testing, such as engine dynamometer, transmission stand or axle stand testing, (2) simulations based on component level test data and (3) vehicle-level testing, such as chassis dynamometer or on-road testing. This paper focuses on vehicle-level testing to show where energy is lost throughout a complete vehicle powertrain. This approach captures all physical effects of a vehicle driving in real-world conditions, including torque converter lockup strategies, transmission shifting, engine control strategies and inherent mechanical efficiency of the components. A modern rear-wheel drive light duty pickup truck was instrumented and tested on a chassis dynamometer. Power was measured at the engine crankshaft output, the rear driveshaft and at the dynamometer.
Technical Paper

Investigations of Lubricant Sludge Formation in the Field: Development of an Effective New Fleet Test Technique

1991-02-01
910748
A new field test procedure for evaluation of the sludge formation tendencies of lubricants has been developed. The procedure has the benefits of short running time, reduced variability, and dramatic separation of API SF vs API SG oils. This paper discusses development of the operational procedure and evaluation of four lubricants, including commercial-type API SF and API SG oils as well as experimental future oils. Significantly improved sludge ratings were obtained with an experimental API SG oil. The sludge formation process was studied using infrared spectroscopy, TAN, dielectric measurements, viscosity, quasielastic light scattering particle size, and transmission electron microscopy techniques. These analyses show production of contaminants which form insoluble particles that build up and precipitate out of suspension as sludge. Certain drain analyses can be used as tools for predicting field sludge deposition time.
X