Refine Your Search

Search Results

Viewing 1 to 17 of 17
Journal Article

Analysis of EGR Effects on the Soot Distribution in a Heavy Duty Diesel Engine using Time-Resolved Laser Induced Incandescence

2010-10-25
2010-01-2104
The soot distribution as function of ambient O₂ mole fraction in a heavy-duty diesel engine was investigated at low load (6 bar IMEP) with laser-induced incandescence (LII) and natural luminosity. A Multi-YAG laser system was utilized to create time-resolved LII using 8 laser pulses with a spacing of one CAD with detection on an 8-chip framing camera. It is well known that the engine-out smoke level increases with decreasing oxygen fraction up to a certain level where it starts to decrease again. For the studied case the peak occurred at an O₂ fraction of 11.4%. When the oxygen fraction was decreased successively from 21% to 9%, the initial soot formation moved downstream in the jet. At the lower oxygen fractions, below 12%, no soot was formed until after the wall interaction. At oxygen fractions below 11% the first evidence of soot is in the recirculation zone between two adjacent jets.
Journal Article

Automated Detection of Primary Particles from Transmission Electron Microscope (TEM) Images of Soot Aggregates in Diesel Engine Environments

2015-09-01
2015-01-1991
The major challenge of the post-processing of soot aggregates in transmission electron microscope (TEM) images is the detection of soot primary particles that have no clear boundaries, vary in size within the fractal aggregates, and often overlap with each other. In this study, we propose an automated detection code for primary particles implementing the Canny Edge Detection (CED) and Circular Hough Transform (CHT) on pre-processed TEM images for particle edge enhancement using unsharp filtering as well as image inversion and self-subtraction. The particle detection code is tested for soot TEM images obtained at various ambient and injection conditions, and from five different combustion facilities including three constant-volume combustion chambers and two diesel engines.
Technical Paper

Comparison of the Lift-Off Lengths Obtained by Simultaneous OH-LIF and OH* Chemiluminescence Imaging in an Optical Heavy-Duty Diesel Engine

2015-09-06
2015-24-2418
The presence of OH radicals as a marker of the high temperature reaction region usually has been used to determine the lift-off length (LOL) in diesel engines. Both OH Laser Induced Fluorescence (LIF) and OH* chemiluminescence diagnostics have been widely used in optical engines for measuring the LOL. OH* chemiluminescence is radiation from OH being formed in the exited states (OH*). As a consequence OH* chemiluminescence imaging provides line-of-sight information across the imaged volume. In contrast, OH-LIF provides information on the distribution of radicals present in the energy ground state. The OH-LIF images only show OH distribution in the thin cross-section illuminated by the laser. When both these techniques have been applied in earlier work, it has often been reported that the chemiluminescence measurements result in shorter lift-off lengths than the LIF approach.
Journal Article

Diesel Spray Ignition Detection and Spatial/Temporal Correction

2012-04-16
2012-01-1239
Methods for detection of the spatial position and timing of diesel ignition with improved accuracy are demonstrated in an optically accessible constant-volume chamber at engine-like pressure and temperature conditions. High-speed pressure measurement using multiple transducers, followed by triangulation correction for the speed of the pressure wave, permits identification of the autoignition spatial location and timing. Simultaneously, high-speed Schlieren and broadband chemiluminescence imaging provides validation of the pressure-based triangulation technique. The combined optical imaging and corrected pressure measurement techniques offer improved understanding of diesel ignition phenomenon. Schlieren imaging shows the onset of low-temperature (first-stage) heat release prior to high-temperature (second-stage) ignition. High-temperature ignition is marked by more rapid pressure rise and broadband chemiluminescence.
Technical Paper

Effect of Piston Bowl Shape and Swirl Ratio on Engine Heat Transfer in a Light-Duty Diesel Engine

2014-04-01
2014-01-1141
Heat transfer losses are one of the largest loss contributions in a modern internal combustion engine. The aim of this study is to evaluate the contribution of the piston bowl type and swirl ratio to heat losses and performance. A commercial CFD tool is used to carry out simulations of four different piston bowl geometries, at three engine loads with two different swirl ratios at each load point. One of the geometries is used as a reference point, where CFD results are validated with engine test data. All other bowl geometries are scaled to the same compression ratio and make use of the same fuel injection, with a variation in the spray target between cases. The results show that the baseline case, which is of a conventional diesel bowl shape, provides the best emission performance, while a more open, tapered, lip-less combustion bowl is the most thermodynamically efficient.
Journal Article

Effects of Post-Injection Strategies on Near-Injector Over-Lean Mixtures and Unburned Hydrocarbon Emission in a Heavy-Duty Optical Diesel Engine

2011-04-12
2011-01-1383
Post-injection strategies aimed at reducing engine-out emissions of unburned hydrocarbons (UHC) were investigated in an optical heavy-duty diesel engine operating at a low-load, low-temperature combustion (LTC) condition with high dilution (12.7% intake oxygen) where UHC emissions are problematic. Exhaust gas measurements showed that a carefully selected post injection reduced engine-out load-specific UHC emissions by 20% compared to operation with a single injection in the same load range. High-speed in-cylinder chemiluminescence imaging revealed that without a post injection, most of the chemiluminescence emission occurs close to the bowl wall, with no significant chemiluminescence signal within 27 mm of the injector. Previous studies have shown that over-leaning in this near-injector region after the end of injection causes the local equivalence ratio to fall below the ignitability limit.
Technical Paper

Effects of an Annular Piston Bowl-Rim Cavity on In-Cylinder and Engine-Out Soot of a Heavy-Duty Optical Diesel Engine

2021-04-06
2021-01-0499
The effect of an annular, piston bowl-rim cavity on in-cylinder and engine-out soot emissions is measured in a heavy-duty, optically accessible, single-cylinder diesel engine using in-cylinder soot diagnostics and exhaust smoke emission measurements. The baseline piston configuration consists of a right-cylindrical bowl, while the cavity-piston configuration features an additional annular cavity that is located below the piston bowl-rim and connected to the main-combustion chamber through a thin annular passage, accounting for a 3% increase in the clearance volume, resulting in a reduction in geometric compression ratio (CR) from 11.22 to 10.91. Experiments using the cavity-piston configuration showed a significant reduction of engine-out smoke ranging from 20-60% over a range of engine loads.
Technical Paper

Flow Field Measurements inside a Piston Bowl of a Heavy-Duty Diesel Engine

2011-08-30
2011-01-1835
Combination of flow field measurements, shown in this paper, give new information on the effect of engine run parameters to formation of different flow fields inside piston bowl. The measurements were carried out with particle image velocimetry (PIV) technique in optical engine. Good set of results was achieved even though the feasibility of this technique in diesel engines is sometimes questioned. Main challenge in diesel engines is background radiation from soot particles which is strong enough to conceal the PIV signal. Window staining in diesel engine is also a problem, since very high particle image quality is needed for velocity analysis. All measurements were made in an optical heavy-duty diesel engine. Optical design of engine was Bowditch type [1]. The engine was charged and equipped with exhaust gas recirculation (EGR). The exhaust gas level was monitored by oxygen concentration and the level was matched to former soot concentration measurements.
Journal Article

Ignition Quality Effects on Lift-Off Stabilization of Synthetic Fuels

2015-04-14
2015-01-0792
The ignition and flame stabilization characteristics of two synthetic fuels, having significantly different cetane numbers, are investigated in a constant volume combustion vessel over a range of ambient conditions representative of a compression ignition engine operating at variable loads. The synthetic fuel with a cetane number of 63 (S-1) is characterized by ignition delays that are only moderately longer than n-dodecane (cetane number of 87) over a range of ambient conditions. By comparison, the synthetic fuel with a cetane number of 17 (S-2) requires temperatures approximately 300 K higher to achieve the same ignition delays. The much different ignition characteristics and operating temperature range present a scenario where the lift-off stabilization may be substantially different.
Technical Paper

Impact of Mechanical Deformation due to Pressure, Mass, and Thermal Forces on the In-Cylinder Volume Trace in Optical Engines of Bowditch Design

2011-01-19
2011-26-0082
A detailed investigation is made of the impact of mechanical deformation on the in-cylinder volume as function of crank angle degree in an optical engine of Bowditch design. The squish height is found to change linearly with mass and pressure forces. It increases due to pressure forces and decreases due to mass forces. The thermal forces have an impact on the squish height but it is not clear in what direction. The volume change caused by deformations did not change the calculated load significantly but gave errors during heat release calculations. Two different strategies to reduce these errors are presented.
Technical Paper

Influence of Spray-Target and Squish Height on Sources of CO and UHC in a HSDI Diesel Engine During PPCI Low-Temperature Combustion

2009-11-02
2009-01-2810
Laser induced fluorescence (LIF) imaging during the expansion stroke, exhaust gas emissions, and cylinder pressure measurements were used to investigate the influence on combustion and CO/UHC emissions of variations in squish height and fuel spray targeting on the piston. The engine was operated in a highly dilute, partially premixed, low-temperature combustion mode. A small squish height and spray targeting low on the piston gave the lowest exhaust emissions and most rapid heat release. The LIF data show that both the near-nozzle region and the squish volume are important sources of UHC emissions, while CO is dominated by the squish region and is more abundant near the piston top. Emissions from the squish volume originate primarily from overly lean mixture. At the 3 bar load investigated, CO and UHC levels in mixture leaving the bowl and ring-land crevice are low.
Journal Article

Lift-Off Length in an Optical Heavy-Duty Diesel Engine

2015-04-14
2015-01-0793
High-speed OH chemiluminescence imaging is used to measure the lift-off length of diesel sprays in an optical heavy-duty diesel engine of 2 L displacement operated at 1200 rpm and 5 bar IMEP. Stereoscopic images are acquired at two different wavelengths (310 and 330 nm). Subtraction of pairwise images helps reducing the background coming from natural soot incandescence in the OH chemiluminescence images. Intake air temperature (343 to 403 K), motored top dead center density (18 to 22 kg/m3), fuel injection pressure (150 to 250 MPa), intake oxygen concentration (17 to 21 %vol) and nozzle diameter (0.1 and 0.14 mm) are varied and a nonlinear regression model is derived from the experimental results to describe stabilized lift-off length as function of the experimental factors. The lift-off length follows the general trends that are known from spray vessel investigations, but the strength of the dependence on certain variables deviates strongly from those studies.
Journal Article

Lift-Off Length in an Optical Heavy-Duty Diesel Engine: Effects of Swirl and Jet-Jet Interactions

2015-09-06
2015-24-2442
The influence of jet-flow and jet-jet interactions on the lift-off length of diesel jets are investigated in an optically accessible heavy-duty diesel engine. High-speed OH chemiluminescence imaging technique is employed to capture the transient evolution of the lift-off length up to its stabilization. The engine is operated at 1200 rpm and at a constant load of 5 bar IMEP. Decreasing the inter-jet spacing shortens the liftoff length of the jet. A strong interaction is also observed between the bulk in-cylinder gas temperature and the inter-jet spacing. The in-cylinder swirl level only has a limited influence on the final lift-off length position. Increasing the inter-jet spacing is found to reduce the magnitude of the cycle-to-cycle variations of the lift-off length.
Technical Paper

Mechanisms of Post-Injection Soot-Reduction Revealed by Visible and Diffused Back-Illumination Soot Extinction Imaging

2018-04-03
2018-01-0232
Small closely-coupled post injections of fuel in diesel engines are known to reduce engine-out soot emissions, but the relative roles of various underlying in-cylinder mechanisms have not been established. Furthermore, the efficacy of soot reduction is not universal, and depends in unclear ways on operating conditions and injection schedule, among other factors. Consequently, designing engine hardware and operating strategies to fully realize the potential of post-injections is limited by this lack of understanding. Following previous work, several different post-injection schedules are investigated using a single-cylinder 2.34 L heavy-duty optical engine equipped with a Delphi DFI 1.5 light-duty injector. In this configuration, adding a closely-coupled post injection with sufficiently short injection duration can increase the load without increasing soot emissions.
Technical Paper

Mixing in Wall-Jets in a Heavy-Duty Diesel Engine: A LES Study

2014-04-01
2014-01-1127
The paper presents a large eddy simulation investigation on the effect of fuel injection pressure on mixing, in an optical heavy-duty diesel engine. Recent investigation on impinging wall jets at constant-volume and quiescent conditions exhibited augmented air entrainment in wall jets with increasing injection pressure, when compared with a free jet. The increased mixing rates were explained as owing to enhanced turbulence and vortex formation in the jet-tip in the recirculation zone. A recent investigation carried out in an optical heavy-duty diesel engine indicated however a negligible effect of injection pressure on the mixing in the engine environment. The effect of enhanced turbulence and vortex formation of the jet-tip in the recirculation zone is believed weaker than the effect of engine confinement, due to the presence of fuel from adjacent jets limiting the mixing the fuel with the ambient gas.
Technical Paper

Radiocarbon and Hydrocarbon Analysis of PM Sources During WHTC Tests on a Biodiesel-Fueled Engine

2014-04-01
2014-01-1243
PM in diesel exhaust has been given much attention due to its adverse effect on both climate and health. As the PM emission levels are tightened, the portion of particles originating from the lubrication oil is likely to increase. In this study, exhausts from a biodiesel-fueled Euro 5 engine were examined to determine how much of the carbonaceous particles that originated from the fuel and the lubrication oil, respectively. A combination of three methods was used to determine the PM origin: chain length analysis of the hydrocarbons, determination of organic and elemental carbon (OC and EC), and the concentration of 14C found in the exhausts. It was found that the standard method for measuring hydrocarbons in PM on a filter (chain length analysis) only accounted for 63 % of the OC, meaning that it did not account for all non-soot carbon in the exhausts.
Journal Article

Study of the Early Flame Development in a Spark-Ignited Lean Burn Four-Stroke Large Bore Gas Engine by Fuel Tracer PLIF

2014-04-01
2014-01-1330
In this work the pre- to main chamber ignition process is studied in a Wärtsilä 34SG spark-ignited lean burn four-stroke large bore optical engine (bore 340 mm) operating on natural gas. Unburnt and burnt gas regions in planar cross-sections of the combustion chamber are identified by means of planar laser induced fluorescence (PLIF) from acetone seeded to the fuel. The emerging jets from the pre-chamber, the ignition process and early flame propagation are studied. Measurements reveal the presence of a significant temporal delay between the occurrence of a pressure difference across the pre-chamber holes and the appearance of hot burnt/burning gases at the nozzle exit. Variations in the delay affect the combustion timing and duration. The combustion rate in the pre-chamber does not influence the jet propagation speed, although it still has an effect on the overall combustion duration.
X