Refine Your Search

Topic

Author

Search Results

Technical Paper

A Predictive Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

2006-10-16
2006-01-3329
A previously presented robust and fast diagnostic NOx model was modified into a predictive model. This was done by using simple yet physically-based models for fuel injection, ignition delay, premixed heat release rate and diffusion combustion heat release rate. The model can be used both for traditional high temperature combustion and for high-EGR low temperature combustion. It was possible to maintain a high accuracy and calculation speed of the NOx model itself. The root mean square of the relative model error is 16 % and the calculation speed is around one second on a PC. Combustion characteristics such as ignition delay, CA50 and the general shape of the heat release rate are well predicted by the combustion model. The model is aimed at real time NOx calculation and optimization in a vehicle on the road.
Technical Paper

A Study on In-Cycle Control of NOx Using Injection Strategy with a Fast Cylinder Pressure Based Emission Model as Feedback

2013-10-14
2013-01-2603
The emission control in heavy-duty vehicles today is based on predefined injection strategies and after-treatment systems such as SCR (selective catalytic reduction) and DPF (diesel particulate filter). State-of-the-art engine control is presently based on cycle-to-cycle resolution. The introduction of the crank angle resolved pressure measurement, from a piezo-based pressure sensor, enables the possibility to control the fuel injection based on combustion feedback while the combustion is occurring. In this paper a study is presented on the possibility to control NOx (nitrogen oxides) formation with a crank angle resolved NOx estimator as feedback. The estimator and the injection control are implemented on an FPGA (Field-Programmable Gate Array) to manage the inherent time constraints. The FPGA is integrated with the rest of the engine control system for injection control and measurement.
Journal Article

Air-Entrainment in Wall-Jets Using SLIPI in a Heavy-Duty Diesel Engine

2012-09-10
2012-01-1718
Mixing in wall-jets was investigated in an optical heavy-duty diesel engine with several injector configurations and injection pressures. Laser-induced fluorescence (LIF) was employed in non-reacting conditions in order to quantitatively measure local equivalence ratios in colliding wall-jets. A novel laser diagnostic technique, Structured Laser Illumination Planar Imaging (SLIPI), was successfully implemented in an optical engine and permits to differentiate LIF signal from multiply scattered light. It was used to quantitatively measure local equivalence ratio in colliding wall-jets under non-reacting conditions. Mixing phenomena in wall-jets were analyzed by comparing the equivalence ratio in the free part of the jet with that in the recirculation zone where two wall-jets collide. These results were then compared to φ predictions for free-jets. It was found that under the conditions tested, increased injection pressure did not increase mixing in the wall-jets.
Technical Paper

An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion

2010-10-25
2010-01-2198
A Scania 13 1 engine modified for single cylinder operations was run using nine fuels in the boiling point range of gasoline, but very different octane number, together with PRF20 and MK1-diesel. The eleven fuels were tested in a load sweep between 5 and 26 bar gross IMEP at 1250 rpm and also at idle (2.5 bar IMEP, 600 rpm). The boost level was proportional to the load while the inlet temperature was held constant at 303 K. For each fuel the load sweep was terminated if the ignitibility limit was reached. A lower load limit of 15 and 10 bar gross IMEP was found with fuels having an octane number range of 93-100 and 80-89 respectively, while fuels with an octane number below 70 were able to run through the whole load range including idle. A careful selection of boost pressure and EGR in the previously specified load range allowed achieving a gross indicated efficiency between 52 and 55% while NOx ranged between 0.1 and 0.5 g/kWh.
Technical Paper

An Experimental Investigation of a Multi-Cylinder Engine with Gasoline-Like Fuel towards a High Engine Efficiency

2016-04-05
2016-01-0763
Partially Premixed Combustion (PPC) is a promising combustion concept with high thermodynamic efficiency and low emission level, and also with minimal modification of standard engine hardware. To use PPC in a production oriented engine, the optimal intake charge conditions for PPC should be included in the analysis. The experiments in this paper investigated and confirmed that the optimal intake conditions of net indicated efficiency for PPC are EGR between 50% and 55% as possible and the lambda close to 1.4. Heat-transfer energy and exhaust gas waste-energy contribute to the majority of the energy loss in the engine. The low EGR region has high heat-transfer and low exhaust gas enthalpy-waste, while the high EGR region has low heat-transfer and high exhaust gas waste-enthalpy. The optimal EGR condition is around 50% where the smallest energy loss is found as a trade-off between heat transfer and exhaust-gas enthalpy-waste.
Journal Article

An In-Cycle based NOx Reduction Strategy using Direct Injection of AdBlue

2014-10-13
2014-01-2817
In the last couple of decades, countries have enacted new laws concerning environmental pollution caused by heavy-duty commercial and passenger vehicles. This is done mainly in an effort to reduce smog and health impacts caused by the different pollutions. One of the legislated pollutions, among a wide range of regulated pollutions, is nitrogen oxides (commonly abbreviated as NOx). The SCR (Selective Catalytic Reduction) was introduced in the automotive industry to reduce NOx emissions leaving the vehicle. The basic idea is to inject a urea solution (AdBlue™) in the exhaust gas before the gas enters the catalyst. The optimal working temperature for the catalyst is somewhere in the range of 300 to 400 °C. For the reactions to occur without a catalyst, the gas temperature has to be at least 800 °C. These temperatures only occur in the engine cylinder itself, during and after the combustion.
Technical Paper

Analysis of Surrogate Fuels Effect on Ignition Delay and Low Temperature Reaction during Partially Premixed Combustion

2013-04-08
2013-01-0903
Fuel effects on ignition delay and low temperature reactions (LTR) during partially premixed combustion (PPC) were analyzed using Design of Experiments (DoE). The test matrix included seventeen mixtures of n-heptane, isooctane, toluene and ethanol covering a broad range of ignition quality and fuel chemistry. Experiments were performed on a light-duty diesel engine at 8 bar IMEPg, 1500 rpm with a variation in combustion phasing, inlet oxygen concentration and injection pressure. A single injection strategy was used and the start of injection and injection duration were adjusted to achieve the desired load and combustion phasing. The experimental data show that fuels with higher Research Octane Number (RON) values generally produced longer ignition delays. In addition, the alcohol content had significantly stronger effect on ignition delay than the aromatic content.
Technical Paper

Applicability of Ionization Current Sensing Technique with Plasma Jet Ignition Using Pre-Chamber Spark Plug in a Heavy Duty Natural Gas Engine

2012-09-10
2012-01-1632
This article deals with study of ionization current sensing technique's signal characteristics while operating with pre-chamber spark plug to achieve plasma jet ignition in a 6 cylinder 9 liter turbo-charged natural gas engine under EGR and excess air dilution. Unlike the signal with conventional spark plug which can be divided into distinct chemical and thermal ionization peaks, the signal with pre-chamber spark plug shows a much larger first peak and a negligible second peak thereafter. Many studies in past have found the time of second peak coinciding with the time of maximum cylinder pressure and this correlation has been used as an input to combustion control systems but the absence of second peak makes application of this concept difficult with pre-chamber spark plug.
Technical Paper

Automated IC Engine Model Development with Uncertainty Propagation

2011-04-12
2011-01-0237
This paper describes the development of a novel data model for storing and sharing data obtained from engine experiments, it then outlines a methodology for automatic model development and applies it to a state-of-the-art engine combustion model (including chemical kinetics) to reduce corresponding model parameter uncertainties with respect engine experiments. These challenges are met by adopting the latest developments in the semantic web to create a shared data model resource for the IC engine development community. The relevant data can be extracted and then used to set-up simulations for parameter estimation by passing it to the relevant application models. A methodology for incorporating experimental and model uncertainties into the model optimization procedure is presented.
Technical Paper

CFD Simulations of Pre-Chamber Jets' Mixing Characteristics in a Heavy Duty Natural Gas Engine

2015-09-01
2015-01-1890
The effect of pre-chamber volume and nozzle diameter on performance of pre-chamber ignition device in a heavy duty natural gas engine has previously been studied by the authors. From the analysis of recorded pre- and main chamber pressure traces, it was observed that a pre-chamber with a larger volume reduced flame development angle and combustion duration while at a given pre-chamber volume, smaller nozzle diameters provided better ignition in the main chamber. The structure of pre-chamber jet and its mixing characteristics with the main chamber charge are believed to play a vital role, and hence CFD simulations are performed to study the fluid dynamic aspects of interaction between the pre-chamber jet and main chamber charge during the period of flame development angle, i.e. before main chamber ignition. It has been observed that jets from a larger pre-chamber penetrates through the main chamber faster due to higher momentum and generates turbulence in the main chamber earlier.
Technical Paper

Characterization of Partially Premixed Combustion

2006-10-16
2006-01-3412
Partially Premixed Combustion (PPC) provides the potential of simultaneous reduction of NOx and soot for diesel engines. This work attempts to characterize the operating range and conditions required for PPC. The characterization is based on the evaluation of emission and in-cylinder measurement data of engine experiments. It is shown that the combination of low compression ratio, high EGR rate and engine operation close to stoichiometric conditions enables simultaneous NOx and soot reduction at loads of 8bar, 12bar, and 15bar IMEP gross. The departure from the conventional NOx-soot trade-off curve has to be paid with a decline in combustion efficiency and a rise in HC and CO emissions. It is shown that the low soot levels of PPC come along with long ignition delay and low combustion temperature. A further result of this work is that higher inlet pressure broadens the operating range of Partially Premixed Combustion.
Technical Paper

Closed-Loop Combustion Control Using Ion-current Signals in a 6-Cylinder Port-Injected Natural-gas Engine

2008-10-06
2008-01-2453
High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark ignition engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. Obtaining reliable spark ignition is difficult however with high pressure and dilution. There will be a limit to the amount of EGR that can be tolerated for each operating point. Open loop operation based on steady state maps is difficult since there is substantial dynamics both from the turbocharger and from the wall heat interaction. The proposed approach applies standard closed loop lambda control for controlling the overall air/fuel ratio. Furthermore, ion-current based dilution limit control is applied on the EGR in order to maximize EGR rate as long as combustion stability is preserved.
Journal Article

Closed-Loop Combustion Control for a 6-Cylinder Port-Injected Natural-gas Engine

2008-06-23
2008-01-1722
High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark ignition engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. Obtaining reliable spark ignition is difficult however with high pressure and dilution. There will be a limit to the amount of EGR that can be tolerated for each operating point. Open loop operation based on steady state maps is difficult since there is substantial dynamics both from the turbocharger and from the wall heat interaction. The proposed approach applies standard closed loop lambda control for controlling the overall air/fuel ratio for a heavy duty 6-cylinder port injected natural gas engine. A closed loop load control is also applied for keeping the load at a constant level when using EGR.
Technical Paper

Combustion Chamber Geometry Effects on the Performance of an Ethanol Fueled HCCI Engine

2008-06-23
2008-01-1656
Homogeneous Charge Compression Ignition (HCCI) combustion is limited in maximum load due to high peak pressures and excessive combustion rate. If the rate of combustion can be decreased the load range can be extended. From previous studies it has been shown that by using a deep square bowl in piston geometry the load range can be extended due to decreased heat release rates, pressure rise rates and longer combustion duration compared to a disc shaped combustion chamber. The explanation for the slower combustion was found in the turbulent flow field in the early stages of the intake stroke causing temperature stratifications throughout the charge. With larger temperature differences the combustion will be longer compared to a perfectly mixed charge with less temperature variations. The methods used for finding this explanation were high-speed cycle-resolved chemiluminescence imaging and fuel tracer planar laser induced fluorescence (PLIF), together with large eddy simulations (LES).
Technical Paper

Comparison of Gasoline and Primary Reference Fuel in the Transition from HCCI to PPC

2017-10-08
2017-01-2262
Our previous research investigated the sensitivity of combustion phasing to intake temperature and injection timing during the transition from homogeneous charge compression ignition (HCCI) to partially premixed combustion (PPC) fuelled with generic gasoline. The results directed particular attention to the relationship between intake temperature and combustion phasing which reflected the changing of stratification level with the injection timing. To confirm its applicability with the use of different fuels, and to investigate the effect of fuel properties on stratification formation, primary reference fuels (PRF) were tested using the same method: a start of injection sweep from -180° to -20° after top dead center with constant combustion phasing by tuning the intake temperature. The present results are further developed compared with those of our previous work, which were based on generic gasoline.
Journal Article

Comparison of Negative Valve Overlap (NVO) and Rebreathing Valve Strategies on a Gasoline PPC Engine at Low Load and Idle Operating Conditions

2013-04-08
2013-01-0902
Gasoline partially premixed combustion (PPC) has the potential of high efficiency and simultaneous low soot and NOx emissions. Running the engine in PPC mode with high octane number fuels has the advantage of a longer premix period of fuel and air which reduces soot emissions. The problem is the ignitability at low load and idle operating conditions. In a previous study it was shown that it is possible to use NVO to improve combustion stability and combustion efficiency at operating conditions where available boosted air is assumed to be limited. NVO has the disadvantage of low net indicated efficiency due to heat losses from recompressions of the hot residual gases. An alternative to NVO is the rebreathing valve strategy where the exhaust valves are reopened during the intake stroke. The net indicated efficiency is expected to be higher with the rebreathing strategy but the question is if similar improvements in combustion stability can be achieved with rebreathing as with NVO.
Journal Article

Double Compression Expansion Engine Concepts: A Path to High Efficiency

2015-04-14
2015-01-1260
Internal combustion engine (ICE) fuel efficiency is a balance between good indicated efficiency and mechanical efficiency. High indicated efficiency is reached with a very diluted air/fuel-mixture and high load resulting in high peak cylinder pressure (PCP). On the other hand, high mechanical efficiency is obtained with very low peak cylinder pressure as the piston rings and bearings can be made with less friction. This paper presents studies of a combustion engine which consists of a two stage compression and expansion cycle. By splitting the engine into two different cycles, high-pressure (HP) and low-pressure (LP) cycles respectively, it is possible to reach high levels of both indicated and mechanical efficiency simultaneously. The HP cycle is designed similar to today's turbo-charged diesel engine but with an even higher boost pressure, resulting in high PCP. To cope with high PCP, the engine needs to be rigid.
Technical Paper

Effect of Jet-Jet Interactions on the Liquid Fuel Penetration in an Optical Heavy-Duty DI Diesel Engine

2013-04-08
2013-01-1615
The liquid phase penetration of diesel sprays under reacting conditions is measured in an optical heavy-duty Direct Injection (DI) diesel engine. Hot gas reservoirs along the diffusion flames have previously been shown to affect the liftoff length on multi hole nozzles. The aim of this study is to see if they also affect the liquid length. The inter-jet spacing is varied together with the Top Dead Center density and the inlet temperature. To avoid unwanted interferences from the natural flame luminosity the illumination wavelength is blue shifted from the black body radiation spectrum and set to 448 nm. Filtered Mie scattered light from the fuel droplets is recorded with a high speed camera. The liquid fuel penetration is evaluated from the start of injection to the quasi steady phase of the jets. Knowledge of jet-jet interaction effects is of interest for transferring fundamental understanding from combustion vessels to practical engine applications.
Technical Paper

Effect of Pre-Chamber Volume and Nozzle Diameter on Pre-Chamber Ignition in Heavy Duty Natural Gas Engines

2015-04-14
2015-01-0867
It has previously been shown by the authors that the pre-chamber ignition technique operating with fuel-rich pre-chamber combustion strategy is a very effective means of extending the lean limit of combustion with excess air in heavy duty natural gas engines in order to improve indicated efficiency and reduce emissions. This article presents a study of the influence of pre-chamber volume and nozzle diameter on the resultant ignition characteristics. The two parameters varied are the ratio of pre-chamber volume to engine's clearance volume and the ratio of total area of connecting nozzle to the pre-chamber volume. Each parameter is varied in 3 steps hence forming a 3 by 3 test matrix. The experiments are performed on a single cylinder 2L engine fitted with a custom made pre-chamber capable of spark ignition, fuel injection and pressure measurement.
Journal Article

Effects of Different Type of Gasoline Fuels on Heavy Duty Partially Premixed Combustion

2009-11-02
2009-01-2668
The effects of fuel properties on the performance and emissions of an engine running in partially premixed combustion mode were investigated using nine test fuels developed in the gasoline boiling point range. The fuels covered a broad range of ignition quality and fuel chemistry. The fuels were characterized by performing a load sweep between 1 and 12 bar gross IMEP at 1000 and 1300 rpm. A heavy duty single cylinder engine from Scania was used for the experiments; the piston was not modified thus resulting in the standard compression ratio of 18:1. In order to properly run gasoline type of fuels in partially premixed combustion mode, an advanced combustion concept was developed. The concept involved using a lot of EGR, very high boost and an advanced injection strategy previously developed by the authors. By applying this concept all the fuels showed gross indicated efficiencies higher than 50% with a peak of 57% at 8 bar IMEP.
X