Refine Your Search

Search Results

Technical Paper

A Study on the Effect of Elevated Coolant Temperatures on HD Engines

2017-10-08
2017-01-2223
In recent years, stricter regulations on emissions and higher demands for more fuel efficient vehicles have led to a greater focus on increasing the efficiency of the internal combustion engine. Nowadays, there is increasing interest in the recovery of waste heat from different engine sources such as the coolant and exhaust gases using, for example, a Rankine cycle. In diesel engines 15% to 30% of the energy from the fuel can be lost to the coolant and hence, does not contribute to producing work on the piston. This paper looks at reducing the heat losses to the coolant by increasing coolant temperatures within a single cylinder Scania D13 engine and studying the effects of this on the energy balance within the engine as well as the combustion characteristics. To do this, a GT Power model was first validated against experimental data from the engine.
Technical Paper

CFD Investigation on Injection Strategy and Gasoline Quality Impact on In-Cylinder Temperature Distribution and Heat Transfer in PPC

2013-09-08
2013-24-0009
Recently, internal combustion engine design has been moving towards downsized, more efficient engines. One key in designing a more efficient engine is the control of heat losses, i.e., improvements of the thermodynamic cycle. Therefore, there is increasing interest in examining and documenting the heat transfer process of an internal combustion engine. A heavy-duty diesel engine was modeled with a commercial CFD code in order to examine the effects of two different gasoline fuels, and the injection strategy used, on heat transfer within the engine cylinder in a partially premixed combustion (PPC) mode. The investigation on the fuel quality and injection strategy indicates that the introduction of a pilot injection is more beneficial in order to lower heat transfer, than adjusting the fuel quality. This is due to reduced wall exposure to higher temperature gases and more equally distributed heat losses in the combustion chamber.
Technical Paper

Comparison of Gasoline and Primary Reference Fuel in the Transition from HCCI to PPC

2017-10-08
2017-01-2262
Our previous research investigated the sensitivity of combustion phasing to intake temperature and injection timing during the transition from homogeneous charge compression ignition (HCCI) to partially premixed combustion (PPC) fuelled with generic gasoline. The results directed particular attention to the relationship between intake temperature and combustion phasing which reflected the changing of stratification level with the injection timing. To confirm its applicability with the use of different fuels, and to investigate the effect of fuel properties on stratification formation, primary reference fuels (PRF) were tested using the same method: a start of injection sweep from -180° to -20° after top dead center with constant combustion phasing by tuning the intake temperature. The present results are further developed compared with those of our previous work, which were based on generic gasoline.
Journal Article

Double Compression Expansion Engine Concepts: A Path to High Efficiency

2015-04-14
2015-01-1260
Internal combustion engine (ICE) fuel efficiency is a balance between good indicated efficiency and mechanical efficiency. High indicated efficiency is reached with a very diluted air/fuel-mixture and high load resulting in high peak cylinder pressure (PCP). On the other hand, high mechanical efficiency is obtained with very low peak cylinder pressure as the piston rings and bearings can be made with less friction. This paper presents studies of a combustion engine which consists of a two stage compression and expansion cycle. By splitting the engine into two different cycles, high-pressure (HP) and low-pressure (LP) cycles respectively, it is possible to reach high levels of both indicated and mechanical efficiency simultaneously. The HP cycle is designed similar to today's turbo-charged diesel engine but with an even higher boost pressure, resulting in high PCP. To cope with high PCP, the engine needs to be rigid.
Technical Paper

Effect of Injection Timing on the Ignition and Mode of Combustion in a HD PPC Engine Running Low Load

2019-04-02
2019-01-0211
This work aims to study the effect of fuel inhomogeneity on the ignition process and subsequent combustion in a compression ignition Partially Premixed Combustion (PPC) engine using a primary reference fuel (PRF) in low load conditions. Five cases with injection timings ranging from the start of injection (SOI) at -70 crank angle degrees (CAD) to -17 CAD have been studied numerically and experimentally in a heavy duty (HD) piston bowl geometry. Intake temperature is adjusted to keep the combustion phasing constant. Three dimensional numerical simulations are performed in a closed cycle sector domain using the Reynolds Averaged Navier-Stokes (RANS) formulation with k-ϵ turbulence closure and direct coupling of finite rate chemistry. The results are compared with engine experiments. The predicted trends in required intake temperature and auto-ignition location for a constant combustion phasing are consistent with experiments.
Technical Paper

Effect of Piston Geometry on Stratification Formation in the Transition from HCCI to PPC

2018-09-10
2018-01-1800
Partially premixed combustion (PPC) is an advanced combustion strategy that has been proposed to provide higher efficiency and lower emissions than conventional compression ignition, as well as greater controllability than homogeneous charge compression ignition (HCCI). Stratification of the fuel-air mixture is the key to achieving these benefits. The injection strategy, injector-piston geometry design and fuel properties are factors commonly manipulated to adjust the stratification level. In the authors’ previous research, the effects of injection strategy and fuel properties on the stratification formation process were investigated. The results revealed that, for a direct-injection compression ignition engine, by sweeping the injection timing from −180° aTDC (after top dead center) to −20° aTDC, the sweep could be divided into three different regimes: an HCCI regime, a Transition regime and a PPC regime, based on the changing of mixture stratification conditions.
Technical Paper

Emission Formation Study of HCCI Combustion with Gasoline Surrogate Fuels

2013-10-14
2013-01-2626
HCCI combustion can be enabled by many types of liquid and gaseous fuels. When considering what fuels will be most suitable, the emissions also have to be taken into account. This study focuses on the emissions formation originating from different fuel components. A systematic study of over 40 different gasoline surrogate fuels was made. All fuels were studied in a CFR engine running in HCCI operation. Many of the fuels were blended to achieve similar RON's and MON's as gasoline fuels, and the components (n-heptane, iso-octane, toluene, and ethanol) were chosen to represent the most important in gasoline; nparaffins, iso-paraffins, aromatics and oxygenates. The inlet air temperature was varied from 50°C to 150°C to study the effects on the emissions. The compression ratio was adjusted for each operating point to achieve combustion 3 degrees after TDC. The engine was run at an engine speed of 600 rpm, with ambient intake air pressure and with an equivalence ratio of 0.33.
Journal Article

Evaluation of Different Turbocharger Configurations for a Heavy-Duty Partially Premixed Combustion Engine

2017-09-04
2017-24-0164
The engine concept partially premixed combustion (PPC) has proved higher gross indicated efficiency compared to conventional diesel combustion engines. The relatively simple implementation of the concept is an advantage, however, high gas exchange losses has made its use challenging in multi-cylinder heavy duty engines. With high rates of exhaust gas recirculation (EGR) to dilute the charge and hence limit the combustion rate, the resulting exhaust temperatures are low. The selected boost system must therefore be efficient which could lead to large, complex and costly solutions. In the presented work experiments and modelling were combined to evaluate different turbocharger configurations for the PPC concept. Experiments were performed on a multi-cylinder engine. The engine was modified to incorporate long route EGR and a single-stage turbocharger, however, with compressed air from the building being optionally supplied to the compressor.
Journal Article

Exhaust PM Emissions Analysis of Alcohol Fueled Heavy-Duty Engine Utilizing PPC

2016-10-17
2016-01-2288
The focus has recently been directed towards the engine out soot from Diesel engines. Running an engine in PPC (Partially Premixed Combustion) mode has a proven tendency of reducing these emissions significantly. In addition to combustion strategy, several studies have suggested that using alcohol fuels aid in reducing soot emissions to ultra-low levels. This study analyzes and compares the characteristics of PM emissions from naphtha gasoline PPC, ethanol PPC, methanol PPC and methanol diffusion combustion in terms of soot mass concentration, number concentration and particle size distribution in a single cylinder Scania D13 engine, while varying the intake O2. Intake temperature and injection pressure sweeps were also conducted. The fuels emitting the highest mass concentration of particles (Micro Soot Sensor) were gasoline and methanol followed by ethanol. The two alcohols tested emitted nucleation mode particles only, whereas gasoline emitted accumulation mode particles as well.
Technical Paper

Experimental Comparison of Heat Losses in Stepped-Bowl and Re-Entrant Combustion Chambers in a Light Duty Diesel Engine

2016-04-05
2016-01-0732
Heat loss is one of the greatest energy losses in engines. More than half of the heat is lost to cooling media and exhaust losses, and they thus dominate the internal combustion engine energy balance. Complex processes affect heat loss to the cylinder walls, including gas motion, spray-wall interaction and turbulence levels. The aim of this work was to experimentally compare the heat transfer characteristics of a stepped-bowl piston geometry to a conventional re-entrant diesel bowl studied previously and here used as the baseline geometry. The stepped-bowl geometry features a low surface-to-volume ratio compared to the baseline bowl, which is considered beneficial for low heat losses. Speed, load, injection pressure, swirl level, EGR rate and air/fuel ratio (λ) were varied in a multi-cylinder light duty engine operated in conventional diesel combustion (CDC) mode.
Technical Paper

Gasoline Surrogate Fuels for Partially Premixed Combustion, of Toluene Ethanol Reference Fuels

2013-10-14
2013-01-2540
Partially premixed combustion (PPC) is intended to improve fuel efficiency and minimize the engine-out emissions. PPC is known to have the potential to reduce emissions of nitrogen oxides (NOx) and soot, but often at the expense of increased emissions of unburned hydrocarbons (HC) and carbon monoxide (CO). PPC has demonstrated remarkable fuel flexibility and can be operated with a large variety of liquid fuels, ranging from low-octane, high-cetane diesel fuels to high-octane gasolines and alcohols. Several research groups have demonstrated that naphtha fuels provide a beneficial compromise between functional load range and low emissions. To increase the understanding of the influence of individual fuel components typically found in commercial fuels, such as alkenes, aromatics and alcohols, a systematic experimental study of 15 surrogate fuel mixtures of n-heptane, isooctane, toluene and ethanol was performed in a light-duty PPC engine using a design of experiment methodology.
Technical Paper

Heat Loss Analysis for Various Piston Geometries in a Heavy-Duty Methanol PPC Engine

2018-09-10
2018-01-1726
Partially premixed combustion (PPC) in internal combustion engine as a low temperature combustion strategy has shown great potential to achieve high thermodynamic efficiency. Methanol due to its unique properties is considered as a preferable PPC engine fuel. The injection timing to achieve methanol PPC conditions should be set very close to TDC, allowing to utilize spray-bowl interaction to further improve combustion process in terms of emissions and heat losses. In this study CFD simulations are performed to investigate spray-bowl interaction for a number of different piston designs and its impact on the heat transfer and the overall piston performance. The validation case is based on a single cylinder heavy-duty Scania D13 engine with a compression ratio 15. The operation point is set to low load 5.42 IMEPg bar with SOI -3 aTDC.
Technical Paper

Investigation of Partially Premixed Combustion Characteristics in Low Load Range with Regards to Fuel Octane Number in a Light-Duty Diesel Engine

2012-04-16
2012-01-0684
The impact of ignition quality and chemical properties on engine performance and emissions during low load partially premixed combustion (PPC) in a light-duty diesel engine were investigated. Four fuels in the gasoline boiling range, together with Swedish diesel (MK1), were operated at loads between 2 and 8 bar IMEPg at 1500 rpm, with 50% heat released located at 6 crank angle degrees (CAD) after top dead center (TDC). A single injection strategy was used, wherein the start of injection (SOI) and the injection duration were adjusted to achieve desired loads with maintained CA50, as the injection pressure was kept constant at 1000 bar. The objective of this work was to examine the low-load limit for PPC at approximately 50% EGR and λ=1.5, since these levels had been suggested as optimal in earlier studies. The low-load limits with stable combustion were between 5 and 7 bar gross IMEP for the gasoline fuels, higher limit for higher RON values.
Technical Paper

Investigation of the Effect of Glow Plugs on Low Load Gasoline PPC

2020-09-15
2020-01-2067
Low temperature combustion (LTC), is a promising alternative for combustion engines, because it combines the positive aspects of both CI and SI engines, high efficiency and low emissions. Another positive aspect of LTC is that it can operate with gasoline of different octane ratings. Still, higher octane gasolines prove to be difficult to operate at low load conditions leading to high combustion instability (COV) that leads also to high emissions. This drawback can be reduced by increasing the intake air temperature or increasing compression ratio, but it is not a viable strategy in conventional applications. For a diesel engine running under LTC conditions, a possibility is to use the existing hardware, glow plugs in this case, to increase the in-cylinder temperature at low loads and facilitate an improved combustion event.
Technical Paper

Loss Analysis of a HD-PPC Engine with Two-Stage Turbocharging Operating in the European Stationary Cycle

2013-10-14
2013-01-2700
Partially Premixed Combustion (PPC) has demonstrated substantially higher efficiency compared to conventional diesel combustion (CDC) and gasoline engines (SI). By combining experiments and modeling the presented work investigates the underlying reasons for the improved efficiency, and quantifies the loss terms. The results indicate that it is possible to operate a HD-PPC engine with a production two-stage boost system over the European Stationary Cycle while likely meeting Euro VI and US10 emissions with a peak brake efficiency above 48%. A majority of the ESC can be operated with brake efficiency above 44%. The loss analysis reveals that low in-cylinder heat transfer losses are the most important reason for the high efficiencies of PPC. In-cylinder heat losses are basically halved in PPC compared to CDC, as a consequence of substantially reduced combustion temperature gradients, especially close to the combustion chamber walls.
Technical Paper

Optical Characterization of Methanol Sprays and Mixture Formation in a Compression-Ignition Heavy-Duty Engine

2020-09-15
2020-01-2109
Methanol is not a fuel typically used in compression ignition engines due to the high resistance to auto-ignition. However, conventional diesel combustion and PPC offer high engine efficiency along with low HC and CO emissions, albeit with the trade-off of increased NOx and PM emissions. This trade-off balance is mitigated in the case of methanol and other alcohol fuels, as they bring oxygen in the combustion chamber. Thus methanol compression ignition holds the potential for a clean and effective alternative fuel proposition. Most existing research on methanol is on SI engines and very little exists in the literature regarding methanol auto-ignition engine concepts. In this study, the spray characteristics of methanol inside the optically accessible cylinder of a DI-HD engine are investigated. The liquid penetration length at various injection timings is documented, ranging from typical PPC range down to conventional diesel combustion.
Technical Paper

Optical Study of Fuel Spray Penetration and Initial Combustion Location under PPC Conditions

2017-03-28
2017-01-0752
Low temperature combustion modes, such as Homogeneous Charge Compression Ignition (HCCI) and Partially Premixed Combustion (PPC), have been researched over recent decades since the concepts show promise for high efficiency and low emissions compared to conventional diesel combustion. PPC is an intermediate combustion type ranging from HCCI-like combustion to diesel-like combustion. The purpose of this paper is to study optically how the combustion and ignition are affected by different start of injection (SOI) timings. The study is carried out in an optically accessible heavy-duty single-cylinder engine with swirl. The intake pressure was kept constant while the intake temperature was varied to keep the combustion phasing (CA50) constant at ∼3 CAD atdc during an SOI sweep. The fuel used is a mix of primary reference fuels with octane number 81. To determine where the combustion starts, high-speed combustion imaging is used to detect the natural luminosity.
Technical Paper

Potential ESC Performance of a Multi-Cylinder Heavy Duty PPC Truck Engine: System Simulations based on Single Cylinder Experiments

2013-04-08
2013-01-0268
Partially Premixed Combustion (PPC) has demonstrated remarkably high gross indicated engine efficiencies combined with very low engine out emissions. The PPC concept relies on heavy boosting combined with dilution and partial premixing of the charge. The latter is usually achieved with high EGR rates and a separation of the fuel injection from the combustion event. Since more of the produced heat is used for work rather than being wasted with the exhaust gases, concerns have been raised regarding whether it is possible to achieve the required boosting pressures and EGR rates throughout the typical operating regime of a heavy duty (HD) diesel engine through turbocharging only. If supercharging would be required its cost in terms of work would mean a substantial loss of the gain in brake efficiencies of the PPC engine over current HD diesel engines.
Technical Paper

Pressure Sensitivity of HCCI Auto-Ignition Temperature for Gasoline Surrogate Fuels

2013-04-08
2013-01-1669
An index to relate fuel properties to HCCI auto-ignition would be valuable to predict the performance of fuels in HCCI engines from their properties and composition. The indices for SI engines, the Research Octane Number (RON) and Motor Octane Number (MON) are known to be insufficient to explain the behavior of oxygenated fuels in an HCCI engine. One way to characterize a fuel is to use the Auto-Ignition Temperature (AIT). The AIT can be extracted from the pressure trace. Another potentially interesting parameter is the amount of Low Temperature Heat Release (LTHR) that is closely connected to the ignition properties of the fuel. A systematic study of fuels consisting of gasoline surrogate components of n-heptane, iso-octane, toluene, and ethanol was made. 21 fuels were prepared with RON values ranging from 67 to 97.
Technical Paper

Review and Benchmarking of Alternative Fuels in Conventional and Advanced Engine Concepts with Emphasis on Efficiency, CO2, and Regulated Emissions

2016-04-05
2016-01-0882
Alternative fuels have been proposed as a means for future energy-secure and environmentally sustainable transportation. This review and benchmarking show that several of the alternative fuels (e.g. methanol, ethanol, higher alcohols, RME, HVO, DME, and biogas/CNG) work well with several different engine concepts such as conventional SI, DICI, and dual fuel, and with the emerging concepts HCCI, RCCI, and PPC. Energy consumption is in most cases similar to that of diesel or gasoline, with the exception of methanol and ethanol that use less energy, especially in SI engines. Tailpipe emissions of CO2 with respect to engine work output (tank-to-output shaft) can be reduced by more than 15% compared to a highly efficient gasoline SI engine, and are the lowest with CNG / lean-burn SI and with alcohols in several engine concepts. Alternative fuels are considered safe and in most cases are associated with reduced risk with respect to cancer and other health and environmental issues.
X