Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Minimum-Effort Motion Algorithm for Digital Human Models

2003-06-17
2003-01-2228
A new realistic motion control algorithm for digital human models is presented in this paper based on the principle of effort minimization. The proposed algorithm is developed through an innovative mathematical model to make the applications more flexible and more global, especially for the visualization of human motions in automotive assembly operations. The central idea of this unique model is to interpret the solution of the homogeneous Lagrange equation for a mannequin as the origin of dynamic motion. Furthermore, a digital human possesses about 42 joints over the main body except the head, fingers and toes, and offers a large room of kinematic redundancy. We have found 14 new 3-D independent motion markers assigned over the human body to constitute a Cartesian coordinate system, under which a minimum-effort based dynamic control scheme is developed using a state-feedback linearization procedure.
Technical Paper

Air Bag Loading on In-Position Hybrid III Dummy Neck

2001-03-05
2001-01-0179
The Hybrid III family of dummies is used to estimate the response of an occupant during a crash. One recent area of interest is the response of the neck during air bag loading. The biomechanical response of the Hybrid III dummy's neck was based on inertial loading during crash events, when the dummy is restrained by a seat belt and/or seat back. Contact loading resulting from an air bag was not considered when the Hybrid III dummy was designed. This paper considers the effect of air bag loading on the 5th percentile female Hybrid III dummies. The response of the neck is presented in comparison to currently accepted biomechanical corridors. The Hybrid III dummy neck was designed with primary emphasis on appropriate flexion and extension responses using the corridors proposed by Mertz and Patrick. They formulated the mechanical performance requirements of the neck as the relationship between the moment at the occipital condyles and the rotation of the head relative to the torso.
Technical Paper

Comparison of Parametric and Non-Parametric Methods for Determining Injury Risk

2003-03-03
2003-01-1362
This paper contains a review of methods for deriving risk curves from biomechanical data obtained from impact experiments on human surrogates. It covers many of the problems and pitfalls of obtaining realistic human risk curves from impact experiments. The strength and weakness of both parametric and non-parametric methods are evaluated. The limitations of standard analysis of censored impact test data are presented. Methods are given for determining risk curves from both doubly censored data and data obtained from impacts to body regions in which there are more than one mechanism of injury. A detailed set of examples is presented in which different experimental data are analyzed using the Consistent Threshold method and the logistic approach. Finally risk curves for published data are presented for the femur, head, thorax, and neck.
Technical Paper

Development and Testing of a Prototype Pregnant Abdomen for the Small-Female Hybrid III ATD

2001-11-01
2001-22-0003
A new prototype pregnant abdomen for the Hybrid III small-female ATD is being developed and has been evaluated in a series of component and whole-dummy tests. The new abdomen uses a fluid-filled silicone-rubber bladder to represent the human uterus at 30-weeks gestation, and incorporates anthropometry based on measurements of pregnant women in an automotive driving posture. The response of the new pregnant abdomen to rigid-bar, belt, and close-proximity airbag loading closely matches the human cadaver response, which is thought to be representative to the response of the pregnant abdomen. In the current prototype, known as MAMA-2B (Maternal Anthropomorphic Measurement Apparatus, version 2B), the risk of adverse fetal outcome is determined by measuring the peak anterior pressure within the fluid-filled bladder.
Technical Paper

Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments

1992-11-01
922520
Injuries to the thorax and abdomen comprise a significant percentage of all occupant injuries in motor vehicle accidents. While the percentage of internal chest injuries is reduced for restrained front-seat occupants in frontal crashes, serious skeletal chest injuries and abdominal injuries can still result from interaction with steering wheels and restraint systems. This paper describes the design and performance of prototype components for the chest, abdomen, spine, and shoulders of the Hybrid III dummy that are under development to improve the capability of the Hybrid III frontal crash dummy with regard to restraint-system interaction and injury-sensing capability.
Technical Paper

Headform Development for Neck Calibrating Tests of the SID-IIs Side Impact Dummy

2001-03-05
2001-01-0121
The SID-IIs side impact dummy is a newly designed dummy as an anthropomorphic test device for small size person to be used in side impact crash testing. The head and neck are one of the key components for SID-IIs dummy designing, manufacturing, and testing. This paper is focused on the development of a Headform to be used for neck calibration of the SID-IIs side impact dummy. It will be very difficult in neck calibration measurement of the SID-IIs dummy if its head is used for the test directly. The Headform is one of the methods to solve this problem. However, the Headform must be consistent in achieving equivalent functional performance as the dummy head and associated physical properties. A 3-D head model has been developed for obtaining initial basic information. The offset can be controlled within 3% during the engineering design of the Headform. The neck dynamic test has been done before the Headform test.
Technical Paper

SID-IIs Beta+-Prototype Dummy Biomechanical Responses

1998-11-02
983151
This paper presents the results of biomechanical testing of the SID-IIs beta+-prototype dummy by the Occupant Safety Research Partnership. The purpose of this testing was to evaluate the dummy against its previously established biomechanical response corridors for its critical body regions. The response corridors were scaled from the 50th percentile adult male corridors defined in International Standards Organization Technical Report 9790 to corridors for a 5th percentile adult female, using established International Standards Organization procedures. Tests were performed for the head, neck, shoulder, thorax, abdomen and pelvis regions of the dummy. Testing included drop tests, pendulum impacts and sled tests. The biofidelity of the SID-IIs beta+-prototype was calculated using a weighted biomechanical test response procedure developed by the International Standards Organization.
X