Refine Your Search

Topic

Search Results

Technical Paper

A New Method for Obtaining FRF of a Structure in Area Where Impact Hammer Cannot Reach

2007-05-15
2007-01-2385
The Frequency Response Function (FRF) is a fundamental component to identifying the dynamic characteristics of a system. FRF's have a significant impact on modal analysis and root cause analysis of NVH issues. In most cases the FRF can be easily measured, but there are instances when the measurement is unobtainable due to spatial constraints. This paper outlines a simple experimental method for obtaining a high quality input-output FRF of a structure in areas where an impact hammer can not reach during impact testing. Traditionally, the FRF in such an area is obtained by using a load cell extender with a hammer impact excitation. A common problem with this device is a double hit, that yields unacceptable results.
Technical Paper

Advantages of Adaptive Wall Wind Tunnel Technology: A CFD Study for Testing Open Wheel Race Cars

2007-04-16
2007-01-1048
The primary advantage of an Adaptive Wall wind tunnel is that the test section walls and ceiling are contoured to closely approximate the ‘open road' flowfield around the test vehicle. This reproduction of the open road flowfield then results in aerodynamic forces and moments on the test vehicle that are consistent with actual open road forces and moments. Aerodynamic data measured in the adaptive wall test section do not require blockage corrections for adjusting the data to open road results. Extensive full scale experiments, published scale model studies, and Computational Fluid Dynamics (CFD) studies have verified the simulation capability of adaptive wall technology. For the CFD study described here, high-downforce, open-wheel race cars were studied. The numerical simulations with a race car in an Adaptive Wall Test Section (AWTS) wind tunnel are compared with simulations in ‘free air' condition and in a closed wall test section.
Technical Paper

Comparison of Wind Tunnel Configurations for Testing Closed-Wheel Race Cars: A CFD Study

2006-12-05
2006-01-3620
This paper investigates the aerodynamic simulation accuracy of several types of wind tunnel test sections. Computational simulations were performed with a closed wheel race car in an 11.0 m2 adaptive wall, a 16.8 m2 open jet, and a 29.7 m2 slotted wall test section, corresponding to model blockage ratios of 20.9%, 13.7%, and 7.7%, respectively. These are compared to a simulation performed in a nearly interference-free condition having a blockage ratio of 0.05%, which for practical purposes of comparison, is considered a free air condition. The results demonstrate that the adaptive wall most closely simulates the free air condition without the need for interference corrections. In addition to this advantage, the significantly smaller size of the adaptive wall test section offers lower capital and operating costs.
Technical Paper

Design through Collaboration: A Supplier Partnership Paradigm

2000-03-06
2000-01-1389
New supplier / manufacturer relationship are necessary to produce products quickly, cost-effectively, and with features expected by the customer. However, the need for a new relationship is not universally accepted and endorsed. Resistance can be minimized through supplier self-assessment (such as Ford Motor Company's web-based instruments), management initiatives, and incentives. Trust and sharing are hallmarks. This strategy requires a new workplace paradigm affecting culture and people issues. Teams, extend across companies, share ideas and innovations. Decisions need to be mutually beneficial and the long-term value, for supplier and manufacturer, needs to be considered.
Technical Paper

Development of Lift and Drag Corrections for Open Jet Wind Tunnel Tests for an Extended Range of Vehicle Shapes

2003-03-03
2003-01-0934
Wind Tunnel 8 of the Driveability Test Facility (DTF), which achieved full operational status in 2001, is designed to provide full powertrain, aerodynamic, and aero-acoustic test capabilities for automotive product development. In order for it to be fully integrated into product testing, the Ford product engineering community needed to correlate the facility. The major objective of the correlation is quantitative aerodynamic correlation, which will be achieved when aerodynamic coefficients measured in Wind Tunnel 8 can be understood in the context of aerodynamic measurements obtained in other wind tunnels that Ford has used for product testing. The motivation for this study is the aerodynamic interference that is present in all wind tunnels. Aerodynamic interference is the deviation between the true result—which is difficult to determine—and the actual result obtained from the wind tunnel.
Technical Paper

Development of Portable Self Contained Phase Shifting Digital Shearography for Composite Material Testing

2005-04-11
2005-01-0590
The use of composite materials in the automotive industry has become increasingly widespread. With this increase in use, techniques for non-destructive testing (NDT) have become more and more important. Various optical NDT inspective methods such as holography, moiré techniques, and shearography have been used for material testing. Among these methods, shearography appears to be most practical. Shearography has a simple optical setup due to its “self-referencing” system, and it is relatively insensitive against rigid-body motions. Measurements of displacement derivatives, and thus strain directly, rather than the displacement itself is achieved through this method. Therefore shearography detects defects in objects by correlating anomalies of strain which are usually easier than correlating the anomalies of the displacement itself, as in holography. To date shearography has shown potential as a NDT tool for identifying defects in small structures.
Technical Paper

Experimental & Computational Simulations Utilized During the Aerodynamic Development of the Dodge Intrepid R/T Race Car

2002-12-02
2002-01-3334
Experimental and computational simulation techniques were concurrently employed throughout the aerodynamic development of the NASCAR Dodge Intrepid R/T in order to achieve a greater understanding of the complex flow fields involved. With less than 500 days to design, understand, and build a competitive vehicle, the development team utilized a closed loop approach to testing. Scale wind tunnel models and Computational Fluid Dynamics (CFD) were used to identify program direction and to speed the development cycle versus the traditional process of full scale testing. This paper will detail the process and application of both the experimental and computational techniques used in the aerodynamic development of the Intrepid R/T race vehicle, primarily focusing on the earlier stages that led to its competition introduction at the start of the 2001 season.
Technical Paper

Front Impact Pulse Severity Assessment Methodology

2005-04-11
2005-01-1416
The pulse severities from various vehicle impact tests need to be assessed during the impact structure development and targeting stage to assure that the occupants can meet the injury criteria as required. The conventional method using TTZV (time to zero velocity), TDC (total dynamic crush), and G1/G2 (two stage averaged pulse) is often unable to give a quick and clear answer to the question being raised. A simple numerical tool is developed here to assess the pulse severity with a single parameter in which the severity is expressed as the amount of chest travel under a certain target restraint curve or chest A-D curve. The tool is applied to several front impact vehicle pulses to show the effectiveness. The new method developed here can be used to assess the pulse severity in an easy and objective way along with conventional parameters.
Technical Paper

Grammatical Evolution Based Tool for Predicting Multivariable Response Surface for Laser Lap Welding

2008-04-14
2008-01-1372
The problem of predicting the quality of weld is critical to manufacturing. A great deal of data is collected under multiple conditions to predict the quality. The data generated at Daimler Chrysler has been used to develop a model based on grammatical evolution. Grammatical Evolution Technique is based on Genetic Algorithms and generates rules from the data which fit the data. This paper describes the development of a software tool that enables the user to choose input variables such as the metal types of top and bottom layers and their thickness, intensity and speed of laser beam, to generate a three dimensional map showing weld quality. A 3D weld quality surface can be generated in response to any of the two input variables picked from the set of defining input parameters. This tool will enable the user to pick the right set of input conditions to get an optimal weld quality. The tool is developed in Matlab with Graphical User Interface for the ease of operation.
Technical Paper

Heat Transfer Enhancement through Impingement of Flows and its Application in Lock-up Clutches

2005-04-11
2005-01-1936
An impinging-flow based methodology of enhancing the heat transfer in the grooves of a lockup clutch is proposed and studied. In order to evaluate its efficacy and reveal the mechanism, the three-dimensional flow within the groove was solved as a conjugate heat transfer problem in a rotating reference frame using the commercial CFD code FLUENT. The turbulence characteristics were predicted using k-ε model. The comparison of cooling effect was made between a simple baseline groove pattern and a typical flow-impingement based groove pattern of the same groove-to-total area ratio in terms of heat rejection ratio, maximum surface temperature, and heat transfer coefficient. It is found that more heat can be rejected with the impinging-flow based groove from the friction surface than with the baseline while the maximum surface temperature is lower in the former case.
Technical Paper

Laminar Flow Whistle on a Vehicle Side Mirror

2007-04-16
2007-01-1549
In the development of several outside mirror designs for vehicles, a high frequency noise (whistling) phenomenon was experienced. First impression was that this might be due to another source on the vehicle (such as water management channels) or a cavity noise; however, upon further investigation the source was found to be the mirror housing. This “laminar whistle” is related to the separation of a laminar boundary layer near the trailing edges of the mirror housing. When there is a free stream impingement on the mirror housing, the boundary layer starts out as laminar, but as the boundary layer travels from the impingement point, distance, speed, and roughness combine to trigger the transition turbulent. However, when the transition is not complete, pressure fluctuations can cause rapidly changing flow patterns that sound like a whistle to the observer. Because the laminar boundary layer has very little energy, it does not allow the flow to stay attached on curved surfaces.
Technical Paper

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-04-16
2007-01-0100
During the design process for a vehicle, the CAD surface geometry becomes available at an early stage so that numerical assessment of aerodynamic performance may accompany the design of the vehicle's shape. Accurate prediction requires open grille models with detailed underhood and underbody geometry with a high level of detail on the upper body surface, such as moldings, trim and parting lines. These details are also needed for aeroacoustics simulations to compute wall-pressure fluctuations, and for thermal management simulations to compute underhood cooling, surface temperatures and heat exchanger effectiveness. This paper presents the results of a significant effort to capitalize on the investment required to build a detailed virtual model of a pickup truck in order to simultaneously assess performance factors for aerodynamics, aeroacoustics and thermal management.
Technical Paper

Performance Testing in DTF Wind Tunnel No. 8

2004-11-30
2004-01-3549
Since being commissioned in 2001, the aero-acoustic wind tunnel at DTF, Wind Tunnel 8 (WT8) has been used to conduct a wide variety of tests. In 2003 alone, over 5250 hours of aerodynamic and aero-acoustic testing were run on over 2000 test articles, including commercial cars, trucks and racing vehicles. Additionally, more unique test articles such as solar cars, motorcycles, Olympic sleds, and others have also been recently tested. The demand for WT8 is driven by the fact that it is among the quietest wind tunnels in the world and one of a very small number of facilities that combines aerodynamic, aero-acoustic, and climatic capabilities in one facility. To enhance WT8's ability to meet the ever-increasing demands of the testing community, and the Motorsports community specifically, an effort was recently initiated to optimize and document the repeatability of aerodynamic force measurements in this tunnel.
Technical Paper

Press-Line Simulation in Stamping Process

2004-03-08
2004-01-1047
The automotive industry is rapidly implementing computer simulation in every aspect of their processes mainly to decrease the time required to bring new models to market. Computer simulation can also be used to reduce the cost of vehicle development and manufacturing. A major portion of the manufacturing cost associated with automotive stamping lies in the process design, build and tryout of production dies and in automation of the transfer equipment. Press home-line tryout is largely a trial-and-error process relying heavily on the skills and experience of tool and die makers. To reduce this dependence on human skills and effort, press-line simulation can be effectively utilized to verify the design accuracy thereby reducing the changes needed to rework the production die/tool. The entire press-line with all its complete accessories can be modeled and checked for design errors similar to the try-out conducted in the production plant.
Technical Paper

Reliability Analysis of Dynamometer Loading Parameters during Vehicle Cell Testing

2007-04-16
2007-01-0600
In automotive testing, a chassis dynamometer is typically used, during cell testing, to evaluate vehicle performance by simulating actual driving conditions. The use of indoor cell testing has the advantage of running controlled tests where the cell temperature and humidity and solar loads can be well controlled. Driving conditions such as vehicle speed, wind speed and grade can be also controlled. Thus, repeated tests can be conducted with minimum test variations. The tractive effort required at the wheels of a vehicle for a given set of operating parameters is determined by taking into account a set of variables which affect vehicle performance. The forces considered in determination of the tractive effort include the constant friction force, variable friction force due to mechanical and tire friction, forces due to inertia and forces due to aerodynamic and wind effects. In addition, forces due to gravity are considered when road grades are simulated.
Technical Paper

Sensitivity Analysis of Powertrain Cooling System Performance

2007-04-16
2007-01-0598
This paper identifies the difference in powertrain cooling system content levels using a nominal and a +3 Standard deviation maximum temperature design approach. Variation simulation analysis tools are used along with a 1-D cooling system performance model to predict resulting temperature distribution for different combinations of input variable populations. The analysis will show differential in powertrain cooling system content, mass, and impact to fuel economy for a nominal vs. +3 sigma design approach.
Technical Paper

Simulation of Hot Stamping Process With Advanced Material Modeling

2004-03-08
2004-01-0168
Advanced material modeling was conducted to describe the thermal-mechanical behavior of Boron Steel during hot stamping, a process in which blanks at 900 °C are formed and quenched between cold dies. Plastic deformation, thermal dilatation and phase transformation were incorporated in the constitutive model and a user-defined subroutine was developed to interface with LS-DYNA. Simulation was conducted on the hot stamping process of a door intrusion beam to gain insight into the physics of the process. Results showed significant influence of the thermal cycle on final product. It was also demonstrated that the program developed can be used as an early feasibility tool to determine baseline processing parameters and to detect potential defects in products without physical prototyping.
Technical Paper

Specifying Steel Properties and Incorporating Forming Effects in Full Vehicle Impact Simulation

2002-03-04
2002-01-0639
Mechanical properties of as-rolled steels used in a vehicle vary with many parameters including gages, steel suppliers and manufacturing processes. The residual forming and strain rate effects of automotive components have been generally neglected in full vehicle crashworthiness analyses. Not having the above information has been considered as one of the reasons for the discrepancy between the results from computer simulation models and actual vehicle tests. The objective of this study is to choose the right material property for as-rolled steels for stamping and crash computer simulation, and investigate the effect of forming and strain rate on the results of full vehicle impact analyses. Major Body-in-White components which were in the crash load paths and whose material property would change in the forming process were selected in this study. The post-formed thickness and yield stress distributions on the components were estimated using One Step forming analyses.
Technical Paper

Springback Study on a Stamped Fender Outer

2003-03-03
2003-01-0685
Springback study on a Dodge Ram fender outer panel is detailed in this paper. A simple measurement fixture is designed for the panel, wherein non-contact laser scan technology is applied The measurement data are compared with the original CAD design surface and deviation contour maps are obtained. Consistency of measurement is studied at different sections among three samples. Details of FEA simulations are outlined. The comparison between measurement and simulation prediction is summarized. A method to describe the consistency of measurement and the accuracy of simulation prediction is proposed. The targets for measurement consistency and simulation accuracy are verified. A sensitivity analysis is also performed to investigate various simulation input parameters.
Technical Paper

Stamping Effect on Oil Canning and Dent Resistance Performances of an Automotive Roof Panel

2007-04-16
2007-01-1696
The objective of this paper is to investigate the effect of stamping process on oil canning and dent resistance performances of an automotive roof panel. Finite element analysis of stamping processes was carried out using LS-Dyna to obtain thickness and plastic strain distributions under various forming conditions. The forming results were mapped onto the roof model by an in-house developed mapping code. A displacement control approach using an implicit FEM code ABAQUS/Standard was employed for oil canning and denting analysis. An Auto/Steel Partnership Standardized Test Procedure for Dent Resistance was employed to establish the analysis model and to determine the dent and oil canning loads. The results indicate that stamping has a positive effect on dent resistance and a negative effect on oil canning performance. As forming strains increase, dent resistance increases while the oil canning load decreases.
X