Refine Your Search

Topic

Author

Search Results

Technical Paper

52 Development of a Four-stroke Engine with Turbo Charger for Personal Watercraft

2002-10-29
2002-32-1821
There is a movement to apply emission control in a marine engine as well due to high public awareness of environmental concern in the United States. We started at the development of 3-seater Personal Watercraft (PWC) equipped with 4-stroke engines in taking environment conformity and potential into account. The PWC employed series 4-cylinder 1100cc displacement engine that has been used for mass production motorcycles. The engine was modified to satisfy requirements for PWC, as a marine engine, such as performance function and corrosion. In order to achieve greater or equal power/weight ratio as against two-stroke PWCs, a four-stroke engine for PWC with an exhaust turbo charger was developed. As a result, we succeeded in developing an engine that attained top-level running performance and durability superior to competitors' 2-stroke engines.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A Quick Warm-Up System During Engine Start-Up Period Using Adaptive Control of Intake Air and Ignition Timing

2000-03-06
2000-01-0551
Early activation of catalyst by quickly raising the temperature of the catalyst is effective in reducing exhaust gas during cold starts. One such technique of early activation of the catalyst by raising the exhaust temperature through substantial retardation of the ignition timing is well known. The present research focuses on the realization of quick warm-up of the catalyst by using a method in which the engine is fed with a large volume of air by feedforward control and the engine speed is controlled by retarding the ignition timing. In addition, an intake air flow control method that comprises a flow rate correction using an adaptive sliding mode controller and learning of flow rate correction coefficient has been devised to prevent control degradation because of variation in the flow rate or aging of the air device. The paper describes the methods and techniques involed in the implementation of a quick warm-up system with improved adaptability.
Technical Paper

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

2012-04-16
2012-01-0365
Manganese oxides show high catalytic activity for CO and HC oxidation without including platinum group metals (PGM). However, there are issues with both thermal stability and resistance to sulfur poisoning. We have studied perovskite-type YMnO₃ (YMO) with the aim of simultaneously achieving both activity and durability. This paper describes the oxidation activity of PGM-free Ag/i-YMO, which is silver supported on improved-YMO (i-YMO). The Ag/i-YMO was obtained by the following two methods. First, Mn⁴+ ratio and specific surface area of YMO were increased by optimizing composition and preparation method. Second, the optimum amount of silver was supported on i-YMO. In model gas tests and engine bench tests, the Ag/i-YMO catalyst showed the same level of activity as that of the conventional Pt/γ-Al₂O₃ (Pt = 3.0 g/L). In addition, there was no degradation with respect to either heat treatment (700°C, 90 h, air) or sulfur treatment (600°C to 200°C, total 60 h, 30 ppm SO₂).
Video

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

2012-06-18
Currently, two consolidated aftertreatment technologies are available for the reduction of NOx emissions from diesel engines: Urea SCR (Selective Catalytic Reduction) systems and LNT (Lean NOx Trap) systems. Urea SCR technology, which has been widely used for many years at stationary sources, is becoming nowadays an attractive alternative also for light-duty diesel applications. However, SCR systems are much more effective in NOx reduction efficiency at high load operating conditions than light load condition, characterized by lower exhaust gas temperatures.
Technical Paper

A Study on Shockless Combustion Change Control of Direct Injection Gasoline Engine

2004-10-25
2004-01-2940
A direct injection gasoline engine featuring a center-injection method that incorporates a high-pressure injector at the top center of the combustion chamber, has been developed. The engine is characterized by a significantly improved fuel economy and emissions performance as the result of the application of direct-injection stratified charge, DISC, which is one of the main features of the direct-injection engine. This paper describes a study on a change control method for switching between DISC and homogeneous charge combustion. The two forms of combustion employed in the new direct-injection engine differ in terms of combustion limits in relation to recirculated exhaust gas and air-fuel ratio. This causes the torque difference which is a specific issue in direct injection gasoline engines. The authors attempted to cope with the issue from the viewpoints of misfire prevention and fuel amount restriction in accordance with the torque required.
Journal Article

Ag-Type PM Oxidation Catalyst with Nd Added to Increase Contact Property between PM and Catalyst

2018-04-03
2018-01-0328
Honda diesel engine vehicles that go on the market in 2018 will be equipped with a newly developed silver (Ag)-type catalyzed diesel particulate filter (cDPF). Ag has high particulate matter (PM) oxidation performance, but conventional catalyst-carrying methods cause weak contact property between PM and Ag; therefore, the newly Ag-type cDPF was developed on the concept of enhancing the property of contact between PM and the catalyst to realize contact property enhancement at the macro, meso, and nano scales. As a result, the newly developed catalyst showed an enhancement of T90 performance by a factor of approximately 2 relative to the conventional Ag-type catalyst in fresh condition. Durability in the environment of an automobile in use was examined through hydrothermal aging, lean-rich (L/R) aging, sulfur (S) poisoning, and ash deposition. The results have confirmed that hydrothermal aging is the greatest factor in deterioration.
Technical Paper

Analysis of the Pressure Drop Increase Mechanism by Ash Accumulated of Coated GPF

2019-04-02
2019-01-0981
With accelerating exhaust gas regulations in recent years, not only CO / HC / NOx but also PN regulation represented by Euro 6 d, China 6 are getting stricter. PN reduction by engine combustion technology development also progresses, but considering RDE, PN reduction by after treatment technology is also indispensable. To reduce PN exhausted from the gasoline engine, it is effective to equip GPF with a filter structure. Considering the installation of GPF in limited space, we developed a system that so far replaces the second TWC with GPF for the TWC 2 bed system. In order to replace the second TWC with GPF, we chose the coated GPF with filtering and TWC functions. Since the initial pressure drop and the catalyst amount (purification performance) of coated GPF have a conflicting relationship, we developed the coated GPF that can achieve both the low initial pressure drop and high purification performance.
Technical Paper

Cooled EGR - A Must or an Option for 2002/04

2002-03-04
2002-01-0962
The introduction of the new emission standards in 2002/04 for heavy-duty diesel engines requires a substantial reduction of the NOx emissions while the particulate emissions remain on a constant level. The application of cooled EGR appears to be the most common approach in order to achieve the required target, although other means such as advanced combustion systems and the application of emission control devices to reduce NOx emissions have to be taken into account as well. The purpose of this study is to investigate the potential of such alternative solutions in comparison with cooled EGR to meet the upcoming emission standards.
Technical Paper

Design of High Performance Coated GPF with 2D/3D Structure Analysis

2019-04-02
2019-01-0977
In recent years along with stringent the regulations, vehicles equipped with gasoline particulate filter (GPF) have started to launch. Compared to bare GPF, coated GPF (cGPF) requires not only PN filtration efficiency, low pressure drop, but also purification performance. In the wall flow type cGPF having a complicated the pore shape, the pore structure further irregularly changes depending on the coated state of the catalyst, so it is difficult to understand the matter of in-wall. In order to advance of cGPF function, it was researched that revealing the relevance between pore structure change in the wall and GPF function. Therefore, to understand the catalyst coated state difference, cGPF of several coating methods were prepared, and their properties were evaluated by various analyses, and performance was tested.
Technical Paper

Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System

2006-04-03
2006-01-0423
The U.S. Tier 2 emission regulations require sophisticated exhaust aftertreatment technologies for diesel engines. One of the projects under the U.S. Department of Energy's (DOE's) Advanced Petroleum Based Fuels - Diesel Emission Controls (APBF-DEC) activity focused on the development of a light-duty passenger car with an integrated NOx (oxides of nitrogen) adsorber catalyst (NAC) and diesel particle filter (DPF) technology. Vehicle emissions tests on this platform showed the great potential of the system, achieving the Tier 2 Bin 5 emission standards with new, but degreened emission control systems. The platform development and control strategies for this project were presented in 2004-01-0581 [1]. The main disadvantage of the NOx adsorber technology is its susceptibility to sulfur poisoning. The fuel- and lubrication oil-borne sulfur is converted into sulfur dioxide (SO2) in the combustion process and is adsorbed by the active sites of the NAC.
Journal Article

Development of Base Metal Catalyst and Its Compatibility Study for Motorcycle Applications

2016-11-08
2016-32-0071
We developed a copper catalyst using zero Platinum group metals (hereafter PGMs) to fit motorcycle specific emission gas environment. Though many research reports to develop catalyst without using PGMs that are precious and costly resources are available, no reports had proven Base Metal Catalyst development to meet actual emission regulation equivalent to PGM catalysts. Compared to conventional PGM catalysts, higher temperature is required to keep high catalytic conversion efficiency by utilizing properties of this Base Metal Catalyst. Thus, this Base Metal Catalyst is located in cross coupling position, though it is rare case in motorcycle. This catalyst location could cause negative impacts on engine knocking, engine performance and drivability. This time, to overcome such negative impacts we optimized whole exhaust system, including parts around catalyst.
Technical Paper

Development of Extruded Electrically Heated Catalyst System for ULEV Standards

1997-02-24
971031
Into the early-part of the next century, automotive emission standards are becoming stricter around the world. The electrically-heated catalyst (EHC) is well known as an effective technology for the reduction of cold-start hydrocarbon emissions without a significant increase in back pressure. Our extruded, alternator powered EHC (APEHC) manufactured with a unique canning method and equipped with a reliable, water proof electrode has demonstrated excellent durability and reliability, as stated in our previous SAE paper (#960340). The APEHC system discussed in this paper has achieved the Ultra-Low-Emission Vehicle (ULEV) standards, after 100,000 miles of fleet testing, without any failure. This is the final milestone in addressing the EHC as a realistic-production technology for ULEV. With the ability to meet ULEV/Stage III emission targets without a significant increase in back pressure, the EHC will be applied to an especially high performance vehicle with a large displacement engine.
Technical Paper

Development of Highly Efficient Lean NOx Catalyst System in Low Exhaust Gas Temperature

2013-04-08
2013-01-0536
The reduction of NOx in exhaust gas has been a major challenge in diesel engine development. For the NOx reduction issues, a new Lean NOx Catalyst (LNC) aftertreatment system has been developed by Honda. A feature of the LNC system is the method that is used to reduce NOx through an NH₃-Selective Catalytic Reduction (NH₃-SCR). In an LNC system NOx is adsorbed at lean conditions, then converted to NH₃ at rich conditions and subsequently reduced in the next lean phase. In recent years, as the efficiency of the diesel engine has improved, the exhaust gas temperatures have been reduced gradually. Therefore, the aftertreatment system needs to be able to purify NOx at lower temperatures. The development of a new LNC which has a high activity at low temperature has been carried out. For the improvement of the LNC three material improvements were developed. The first of these was the development of a NOx adsorbent which is matching the targeted exhaust gas temperatures.
Technical Paper

Development of Low Temperature Active Three Way Catalyst

2019-04-02
2019-01-1293
In recent years, fuel efficiency has been improved by using many technologies such as downsizing engine, turbocharger and direct injection to reduce CO2 emissions from vehicle. However, the temperature of the exhaust gas from the engines using these technologies becomes lower than that form conventional one. That increases the difficulty for three-way catalyst (TWC) to purify CO, HC and NOx enough because TWC is not warmed up just after engine starting. In order to reduce cold emission mentioned above, we have been studying the warmup strategy of which the key property is thermal mass of TWC. To achieve early warmup, thermal mass of TWC is reduced by lightening the weight of (1) substrate and (2) catalytic materials, namely washcoat amount. Along with the strategy, we have developed TWC with lightweight substrate and applied it from the 2016 model year CIVIC.
Technical Paper

Development of Pd-Only Catalyst for LEV III and SULEV30

2015-04-14
2015-01-1003
This research is aimed at development of the catalyst for gasoline automobiles which uses only palladium (Pd) among platinum group metals (PGMs). And the conformity emission category aimed at LEV III-SULEV30. For evaluation, the improvement effect was verified for 2013 model year (MY) ACCORD (LEV II-SULEV) as the reference. As compared with Pd-rhodium (Rh) catalyst, a Pd-only catalyst had the low purification performance of nitrogen oxides (NOx), and there was a problem in the drop in dispersion of Pd by sintering, and phosphorus (P) poisoning.
Technical Paper

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst System

2001-03-05
2001-01-0510
The aggressive reduction of future diesel engine NOx emission limits forces the heavy- and light-duty diesel engine manufacturers to develop means to comply with stringent legislation. As a result, different exhaust emission control technologies applicable to NOx have been the subject of many investigations. One of these systems is the NOx adsorber catalyst, which has shown high NOx conversion rates during previous investigations with acceptable fuel consumption penalties. In addition, the NOx adsorber catalyst does not require a secondary on-board reductant. However, the NOx adsorber catalyst also represents the most sulfur sensitive emissions control device currently under investigation for advanced NOx control. To remove the sulfur introduced into the system through the diesel fuel and stored on the catalyst sites during operation, specific regeneration strategies and boundary conditions were investigated and developed.
Technical Paper

Development of a Diesel Passenger Car Meeting Tier 2 Emissions Levels

2004-03-08
2004-01-0581
Increasing fuel costs, the need to reduce dependence on foreign oil as well as the high efficiency and the desire for superior durability have caused the diesel engine to again become a prime target for light-duty vehicle applications in the United States. In support of this the U.S. Department of Energy (DOE) has engaged in a test project under the Advanced Petroleum Based Fuels-Diesel Emission Control (APBF-DEC) activity to develop a passenger car with the capability to demonstrate compliance with Tier 2 Bin 5 emission targets with a fresh emission control catalyst system. In order to achieve this goal, a prototype engine was installed in a passenger car and optimized to provide the lowest practical level of engine-out emissions.
Technical Paper

Development of a Super-Light Substrate for LEV III/Tier3 Emission Regulation

2015-04-14
2015-01-1001
With the increasing number of automobiles, the worldwide problem of air pollution is becoming more serious. The necessity of reducing tail-pipe emissions is as high as ever, and in countries all over the world the regulations are becoming stricter. The emissions at times such as after engine cold start, when the three-way catalyst (TWC) has not warmed up, accounts for the majority of the emissions of these pollutants from vehicles. This is caused by the characteristic of the TWC that if a specific temperature is not exceeded, TWC cannot purify the emissions. In other words, if the catalyst could be warmed up at an early stage after engine start, this would provide a major contribution to reducing the emissions. Therefore, this research is focused on the substrate weight and investigated carrying out major weight reduction by making the porosity of the substrate larger than that of conventional products.
Technical Paper

Development of an Engine Test Cell for Rapid Evaluation of Advanced Powertrain Technologies using Model-Controlled Dynamometers

2006-04-03
2006-01-1409
Current engine development processes typically involve extensive steady-state and simple transient testing in order to characterize the engine's fuel consumption, emissions, and performance based on several controllable inputs such as throttle, spark advance, and EGR. Steady-state and simple transient testing using idealistic load conditions alone, however, is no longer sufficient to meet powertrain development schedule requirements. Mapping and calibration of an engine under transient operation has become critically important. And, independent engine development utilizing accelerated techniques is becoming more attractive. In order to thoroughly calibrate new engines in accelerated fashion and under realistic transient conditions, more advanced testing is necessary.
X