Refine Your Search

Topic

Author

Search Results

Technical Paper

A Design Study to Determine the Impact of Various Parameters on Door Acoustics

2003-05-05
2003-01-1430
Once the design of a door sheetmetal and accessories is confirmed, the acoustics of the door system depends on the sound package assembly. This essentially consists of a watershield which acts as a barrier and a porous material which acts as an absorber. The acoustical performance of the watershield and the reverberant sound build-up in the door cavity control the performance. This paper discusses the findings of a design study that was developed based on design of experiments (DOE) concepts to determine which parameters of the door sound package assembly are important to the door acoustics. The study was based on conducting a minimum number of tests on a five factor - two level design that covered over 16 different design configurations. In addition, other measurements were made that aided in developing a SEA model which is also compared with the findings of the results of the design study.
Technical Paper

A Simple Approach to Selecting Automotive Body-in-White Primary-Structural Materials

2002-07-09
2002-01-2050
A simple strategy for building lightweight automobile body-in-whites (BIWs) is developed and discussed herein. Because cost is a critical factor, expensive advanced materials, such as carbon fiber composites and magnesium, must only be used where they will be most effective. Constitutive laws for mass savings under various loading conditions indicate that these materials afford greater opportunity for mass saving when used in bending, buckling or torsion than in tensile, shear or compression. Consequently, it is recommended that these advanced materials be used in BIW components subject to bending and torsion such as rails, sills, “A-B-C” pillars, etc. Furthermore, BIW components primarily subject to tension, compression, or shear, such as floor pans, roofs, shock towers, etc., should be made from lower cost steel. Recommendations for future research that are consistent with this strategy are included.
Technical Paper

A Study of Vibration Reducing Effect on Vehicle Dynamics by Hydraulic Damper on Body Structure

2019-04-02
2019-01-0171
This research investigated the mechanism of the effects of hydraulic dampers, which are attached to vehicle body structures and are known by experience to suppress vehicle body vibration and enhance ride comfort and steering stability. In investigating the mechanism, we employed quantitative data from riding tests, and analytical data from simplified vibration models. In our assessment of ride comfort in riding tests using vehicles equipped with hydraulic dampers, we confirmed effects reducing body floor vibration in the low-frequency range. We also confirmed vibration reduction in unsprung suspension parts to be a notable mechanical characteristic which merits close attention in all cases. To investigate the mechanism of the vibration reduction effect in unsprung parts, we considered a simplified vibration model, in which the engine and unsprung parts, which are rigid, are linked to the vehicle body, which is an elastic body equipped with hydraulic dampers.
Technical Paper

Application of All Aluminum Automotive Body for HONDA NSX

1991-02-01
910548
A Sports car's high performance, pursued as its major design point, forces the car to be as light as possible. Because of this, the NSX's body and chassis is build by making the best use of aluminum. This paper describes the development of aluminum for the NSX, and the forming and connecting technologies needed to achieve an all aluminum body.
Technical Paper

Application of Load Path Index U* for Evaluation of Sheet Steel Joint with Spot Welds

2012-04-16
2012-01-0534
An attempt was made to apply the index U* in detail analysis of load paths in structural joints under static load, using as examples coupling structures of two joined frames with hat-shaped sections, and T-beam joint structures each including spot welds, both of which are widely used in automotive body structures. U* is a load path analysis index that expresses the strength of connection between load points and arbitrary points on a structure. It was possible to identify areas making up load paths by means of the magnitude of U* values, and to clarify the areas that should be coupled in order to achieve effective load transfer to contiguous members. In addition, because it is possible to determine whether or not each section of a structure possesses the potential for load transfer using U* analysis, the research also demonstrated that U* could be used as an indicator of joint structures providing efficient load transfer.
Technical Paper

Beam Element Leaf Spring Suspension Model Development and Assessment Using Road Load Data

2006-04-03
2006-01-0994
Knowledge of the loads experienced by a leaf spring suspension is required for the optimal design of the suspension components and frame. The most common method of representing leaf springs is the SAE 3 link model, which does not give good results in the lateral direction. In this paper, a beam element leaf spring model is developed. This model is validated using data obtained from laboratory tests done on leaf spring assemblies. The model is then subjected to actual road load data measured on the Proving Ground. Lastly, results from the beam element model are presented and compared with results obtained from proving ground tests. Overall, the beam element model gives good results in all directions except in situations where it is subjected to high fore/aft acceleration and high reverse braking events.
Technical Paper

Development of Hollow, Weld-able Die-Cast Parts for Aluminum Motorcycle Frames

2003-09-15
2003-32-0055
Using sand cores, the weld-able, hollow die-cast parts have been developed. For casting, the transition flow filling method is applied to reduce gas containment and to minimize damages to the core. In designing the products, the newly developed core stress prediction system by melt pressure distribution and the newly developed in-product gas containment prediction system have been applied. The hollow die-cast frame made by the new method attains a 30% increase in rigidity and 1kg reduction of weight.
Technical Paper

Development of Intelligent Power Unit for 2018 Model Year Accord Hybrid

2019-04-02
2019-01-0592
A compact intelligent power unit capable of being installed under the rear seating was developed for the 2018 model year Accord Hybrid that is to be equipped with the SPORT HYBRID Intelligent Multi Mode Drive (i-MMD) system. The space under the rear seat features multiple constraints on dimensions. In the longitudinal direction, it is necessary to attempt to help ensure occupant leg room and to position the fuel tank; in the vertical direction, it is necessary to attempt to help ensure occupants comfort and a minimum ground clearance; and in the lateral direction, it is necessary to avoid the position of the body side frames and the penetrating section of the exhaust pipe. The technologies described below were applied in order to reduce the size of components, making it possible to position the IPU amid these constraint conditions.
Technical Paper

Development of a Nonlinear Shock Absorber Model for Low-Frequency NVH Applications

2003-03-03
2003-01-0860
This paper dis cusses the development of a nonlinear shock absorber model for low-frequency CAE-NVH applications of body-on-frame vehicles. In CAE simulations, the shock absorber is represented by a linear damper model and is found to be inadequate in capturing the dynamics of shock absorbers. In particular, this model neither captures nonlinear behavior of shock absorbers nor distinguishes between compression and rebound motions of the suspension. Such an inadequacy limits the utility of CAE simulations in understanding the influence of shock absorbers on shake performance of body-on-frame vehicles in the low frequency range where shock absorbers play a significant role. Given this background, it becomes imperative to develop a shock absorber model that is not only sophisticated to describe shock absorber dynamics adequately but also simple enough to implement in full-vehicle simulations. This investigation addresses just that.
Technical Paper

Double-Wishbone Suspension for Honda Prelude

1984-09-01
841186
This paper describes the double wishbone suspension used in the Honda Prelude. This system is designed to improve handling and anti-dive performance via the layout of the suspension arms and the springs and dampers. It also allows a low hood line over the transverse mounted engine for this sports-type vehicle.
Technical Paper

Effect of Polyurethane Structural Foam on Vehicle Stiffness

1999-05-17
1999-01-1785
Stability and structural integrity are extremely important in the design of a vehicle. Structural foams, when used to fill body cavities and joints, can greatly improve the stiffness of the vehicle, and provide additional acoustical and structural benefits. This study involves modal testing and finite element analysis on a sports utility vehicle to understand the effect of structural foam on modal behavior. The modal analysis studies are performed on this vehicle to investigate the dynamic characteristics, joint stiffness and overall body behavior. A design of experiments (DOE) study was performed to understand how the foam's density and placement in the body influences vehicle stiffness. Prior to the design of experiments, a design sensitivity analysis (DSA) was done to identify the sensitive joints in the body structure and to minimize the number of design variables in the DOE study.
Technical Paper

Experimental Modal Methodologies for Quantification of Body/Chassis Response to Brake Torque Variation

2007-05-15
2007-01-2343
Brake torque variation is a source of objectionable NVH body/chassis response. Such input commonly results from brake disk thickness variation. The NVH dynamic characteristics of a vehicle can be assessed and quantified through experimental modal testing for determination of mode resonance frequency, damping property, and shape. Standard full vehicle modal testing typically utilizes a random input excitation into the vehicle frame or underbody structure. An alternative methodology was sought to quantify and predict body/chassis sensitivity to brake torque variation. This paper presents a review of experimental modal test methodologies investigated for the reproduction of vehicle response to brake torque variation in a static laboratory environment. Brake caliper adapter random and sine sweep excitation input as well as body sine sweep excitation in tandem with an intentionally locked brake will be detailed.
Journal Article

Introduction of New Concept U*sum for Evaluation of Weight-Efficient Structure

2011-04-12
2011-01-0061
A new index U* for evaluating load path dispersion is proposed, using a structural load path analysis method based on the concept of U*, which expresses the connection strength between a load point and an arbitrary point within the structure. U* enables the evaluation of the load path dispersion within the structure by statistical means such as histograms and standard deviations. Different loading conditions are applied to a body structure, and the similarity of the U* distributions is evaluated using the direction cosine and U* 2-dimensional correlation diagrams. It is shown as a result that body structures can be macroscopically grasped by using the U* distribution rather than using the stress distribution. In addition, as an example, the U* distribution of torsion loading condition is shown to comprehensively include characteristics of the U* distribution of other loading conditions.
Technical Paper

Investigation of a Simplified Vehicle Model that Can Reproduce Car-Pedestrian Collisions

2014-04-01
2014-01-0514
Japanese accident statistics show that despite the decreasing trend of the overall traffic fatalities, more than 1,000 pedestrians are still killed annually in Japan. One way to develop further understanding of real-world pedestrian accidents is to reconstruct a variety of accident scenarios dynamically using computational models. Some of the past studies done by the authors' group have used a simplified vehicle model to investigate pedestrian lower limb injuries. However, loadings to the upper body also need to be reproduced to predict damage to the full body of a pedestrian. As a step toward this goal, this study aimed to develop a simplified vehicle model capable of reproducing pedestrian full-body kinematics and pelvis and lower limb injury measures. The simplified vehicle model was comprised of four parts: windshield, hood, bumper and lower part of the bumper. Several different models were developed using different combinations of geometric and stiffness representation.
Technical Paper

Light Truck Frame Joint Stiffness Study

2003-03-03
2003-01-0241
Truck frame structural performance of body on frame vehicles is greatly affected by crossmember and joint design. While the structural characteristics of these joints vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in the design cycle. This paper will describe a process used to evaluate the structural stiffness of frame joints based on research of existing procedures and implementation of newly developed methods. Results of five different joint tests selected from current production body-on-frame vehicles will be reported. Correlation between finite element analysis and test results will be shown. Three samples of each joint were tested and the sample variation will be shown. After physical and analytical testing was completed, a Design of Experiments approach was implemented to evaluate the sensitivity of joints with respect to gauge and shape modification.
Technical Paper

Lightweight Magnesium Intensive Body Structure

2006-04-03
2006-01-0523
This paper describes a lightweight magnesium intensive automobile body structure concept developed at DaimlerChrysler to support a high fuel-efficiency vehicle project. This body structure resulted in more than 40% weight reduction over a conventional steel structure while achieving significantly improved structural performance as evaluated through CAE simulations. A business case analysis was conducted and showed promising results. One concept vehicle was built for the purpose of demonstrating concept feasibility. The paper also identifies areas for further development to enable such a vehicle to become a production reality at a later time.
Technical Paper

New Pretreatment and Painting Technology for All-Aluminum Automotive Body

1991-02-01
910887
The Honda NSX, made entirely of aluminum, introduces a concept of using chromium chromate as a method of chemical pretreatment. For other parts that contain a different type of metal, such as various parts of the chassis, a DACRO coating system as well as many other inventions are used. For the paint process itself, a new waterborne basecoat technology is also introduced to obtain a high-class appearance level for the NSX.
Technical Paper

New Proposal of Piston Skirt Form using Multi Objective Optimization Method

2011-04-12
2011-01-1079
A multi-objective optimization model using a piston behavior simulation for the prediction of NV, friction and scuffing was created. This model was used to optimize the piston skirt form, helping to enable well-balanced forms to be sought. Optimization calculations, involving extended analyses and numerous design variables, conventionally necessitate long calculation times in order to achieve adequate outcomes. Because of this, in the present project data was converted into functions in order to help enable the complex piston skirt form to be expressed using a small amount of coefficients. Using the limit values for manufacturability and the degree of contribution to the target functions, the scope of design variables was restricted, and the time necessary for the analysis was significantly reduced. This has helped to enable optimal solutions to be determined within a practical time frame.
Technical Paper

Optimization of Head Impact Waveform to Minimize HIC

2007-04-16
2007-01-0759
To mitigate head impact injuries of vehicle occupants in impact accidents, the FMVSS 201 requires padding of vehicle interior so that under the free-moving-head-form impact, the head injury criterion (HIC) is below the limit. More recently, pedestrian head impact on the vehicle bonnet has been a subject being studied and regulated as requirements to the automobile manufacturers. Over the years, the square wave has been considered as the best waveform for head impacts, although it is impractical to achieve. This paper revisits the head impact topic and challenges the optimality of aiming at the square waveform. It studies several different simple waveforms, with the objective to achieve minimal HIC or minimal crush space required in head-form impacts. With that it is found that many other waveforms can be more efficient and more practical than the square wave, especially for the pedestrian impact.
Technical Paper

Prediction of Ductile Fracture Propagation of High Strength Steels in Automotive Structures

2019-04-02
2019-01-1097
Initiation and propagation of ductile fractures in crashed automotive components made from high strength steels are investigated in order to understand the mechanism of fracture propagation. Fracture of these components is often prone to occur at the sheet edge in a strain concentration zone under crash deformation. The fracture then extends intricately to the inside of the structure under the influence of the local stress and strain field. In this study, a simple tensile test and a 3-point bending test of high strength steels with tensile strengths of 590 MPa and 1180 MPa are carried out. In the tensile test, a coupon having a hole and a notch is deformed in a uniaxial condition. The effect of the notch type on the strain concentration and fracture behavior are investigated by using a digital imaging strain measurement system.
X