Refine Your Search

Topic

Author

Search Results

Technical Paper

1D Modeling of Thermal Expansion Valve for the Assessment of Refrigerant-Induced Noise

2016-04-05
2016-01-1295
Without engine noise, the cabin of an electric vehicle is quiet, but on the other hand, it becomes easy to perceive refrigerant-induced noise in the automotive air-conditioning (A/C) system. When determining the A/C system at the design stage, it is crucial to verify whether refrigerant-induced noise occurs in the system or not before the real A/C systems are made. If refrigerant-induced noise almost never occurs during the design stage, it is difficult to evaluate by vehicle testing at the development stage. This paper presents a 1D modeling methodology for the assessment of refrigerant-induced noise such as self-excitation noise generated by pressure pulsation through the thermal expansion valve (TXV). The GT-SUITE commercial code was used to develop a refrigerant cycle model consisting of a compressor, condenser, evaporator, TXV and the connecting pipe network.
Technical Paper

69 Development of Gear Train Behavioral Analysis Technologies Considering Non-linear Elements

2002-10-29
2002-32-1838
A numerical calculation method, which enables the analysis of gear train behavior including non-linear elements in a motorcycle engine, was established. During the modeling process, it was confirmed that factors such as bearing distortion, radial bearing clearance and elastic deformation of a tooth flank could not be neglected because they effect the rotation behavior. To keep a high accuracy, those factors were included in the simulation model, after they were converted into the rigidity elements along the rotational direction of each gear model. In addition, the model was combined with a crankshaft behavior calculation model for a driving and excitation source. A time domain numerical integration method was used to perform the transient response simulation across a wide range of engine speeds. A jump phenomenon of response behavior of the driven gear was predicted that is a characteristic of non-linear response. The phenomenon was also observed in a physical test.
Technical Paper

A Fully Variable Mechanical Valvetrain with a Simple Moving Pivot

2005-04-11
2005-01-0770
A continuously variable lift, duration and phase mechanical lift mechanism is described, as applied to the intake valvetrain of a SOHC, 4-valve per cylinder, four-cylinder production engine. Improvements in fuel economy were sought by reduction of pumping losses and improved charge preparation, and optimization of WOT torque was attempted by variation of intake valve closing angle. Adjustment of the mechanism is achieved by movement of the pivot shaft for the rocker arms. The relationship between lift, duration and phase is predetermined at the design stage, and is fixed during operation. There is considerable design flexibility to achieve the envelope of lift curves deemed desirable. The operation of the mechanism is described, as are the development procedure, testing with fixed cams, some cycle simulation, friction testing on a separate rig and dyno testing results for idle, part load and WOT.
Technical Paper

A Multiple Order Conformability Model for Uniform Cross-Section Piston Rings

2005-04-11
2005-01-1643
This paper examines the conformability of elastic piston rings to a distorted cylinder bore. Several bounds are available in the literature to help estimate the maximum allowable Fourier coefficient in a Fourier expansion of bore distortion: the analytically derived bounds in [7] and [8], and the semi-empirically derived bounds discussed in [9]. The underlying assumptions for each set of analytic bounds are examined and a multiple order algorithm is derived. The proposed algorithm takes account of multiple orders of distortion at once. It is tested with finite element (FE) data and compared to the classical bound approach. The results indicate that the bounds in [7] are compatible with linear elasticity theory (LET), whereas the bounds in [8] are not. Furthermore, numerical evidence indicates that the present multiple order algorithm can predict seal breaches more accurately than either of the other analytic bounds.
Technical Paper

A New Variable Valve Engine Applying Shuttle Cam Mechanism

1992-02-01
920450
Variable-valve-actuation mechanism is considered to be one of the most suitable solutions to realize the compatibility between higher power output and performances in the practical speed range. A new variable-valve-actuation mechanism named “Shuttle Cam” was designed and studied. In this mechanism which was applied to a conventional motorcycle engine with rocker arms and gear-train-driven valve system, the cam gears move along the idler gear. And cam shafts simultaneously slide along the rocker-arm slipper surfaces which are concentric with the idler gear. Consequently valve lift varies continuously in accordance with the alteration in the rocker-arm lever ratio and the cam phasing changes simultaneously in accordance with the cam gear rotation. Result of the experiments has confirmed that the mechanism functions accurately even at high speeds up to 10,000 rpm and some improvements were achieved in power output, fuel consumption, idling quality, and exhaust-noise level.
Technical Paper

A Reduced Order Model for a Passenger Car Turbo Charging System and Application to Engine Output Torque Profile Control

2015-09-01
2015-01-1981
Downsizing engines with a turbocharging system have been widely applied to passenger cars to improve fuel economy. Engine torque response to accelerator operation is one of important features in addition to steady state performance of the system. Torque profile management for turbocharged internal combustion engines is one of required technologies. A turbocharging system for a car is a system with a positive feedback loop in which compressed air drives the compressor after the combustion process. A reduced order model was derived for the charging system. Pressure ratio of a compressor is proportional to square of turbine speed and the turbine speed is a first order delay system to throttle opening in the model. Model structure was designed from mathematical equations that describe turbine and compressor works. Model parameters were identified from measured data. An output torque profile control strategy based on the derived model is investigated.
Technical Paper

A Study of Vehicle Equipped with Non-Throttling S.I. Engine with Early Intake Valve Closing Mechanism

1993-03-01
930820
To enable non-throttling operation of gasoline S.I. engine, we have manufactured engines equipped with a newly developed Hydraulic Variable-valve Train (HVT), which can vary its intake-valve closing-timing freely. The air-intake control ability of HVT engine is equivalent to conventional throttling engines. Combustion becomes unstable, however, under non-throttling operation at idling. For the countermeasure, newly designed combustion chamber has been developed. The reduction of pumping loss by the HVT depends on engine speed rather than load, and amounts to about 80 % maximum. A conventional engine-management system is not applicable for non-throttling operation. Therefore, new management system has been developed for load control.
Technical Paper

A Study of Vibration Reducing Effect on Vehicle Dynamics by Hydraulic Damper on Body Structure

2019-04-02
2019-01-0171
This research investigated the mechanism of the effects of hydraulic dampers, which are attached to vehicle body structures and are known by experience to suppress vehicle body vibration and enhance ride comfort and steering stability. In investigating the mechanism, we employed quantitative data from riding tests, and analytical data from simplified vibration models. In our assessment of ride comfort in riding tests using vehicles equipped with hydraulic dampers, we confirmed effects reducing body floor vibration in the low-frequency range. We also confirmed vibration reduction in unsprung suspension parts to be a notable mechanical characteristic which merits close attention in all cases. To investigate the mechanism of the vibration reduction effect in unsprung parts, we considered a simplified vibration model, in which the engine and unsprung parts, which are rigid, are linked to the vehicle body, which is an elastic body equipped with hydraulic dampers.
Technical Paper

An Improvement of the Prediction Method of the Idling Rattle in Manual Transmission - In the Case of the Manual Transmission with Backlash Eliminator -

2001-03-05
2001-01-1164
To reduce the idling rattle of manual transmissions, the computer simulation has been utilized. However, the conventional simulation model could not express properly the relationship between the transmission oil temperature and the rattle noise level, especially in case of transmission with backlash eliminator in constant mesh gears. In this study, the authors carried out detail experiments investigating the motion of each part in the transmission. Based on the experimental results, an additional mass representing all constant mesh speed gears supported on plain or rolling element bearings was introduced to the simulation model. Using the improved model, it was confirmed that the calculated RMS value of the fluctuation in countershaft angular acceleration corresponds to the experimental rattle noise level.
Technical Paper

Application of Aluminum for Automobile Chassis Parts

1991-02-01
910554
Several processes, such as casting, forging, and pressing, were used in the manufacturing of the Honda NSX's aluminum chassis. For casting, a high grade method which utilizes program control of mold temperature was developed and put into practical use. For optimum forging, a selection of cold and hot processes were investigated and a process to save energy during processing was pursued. As a result, an overall weight reduction of approximately 50% was achieved.
Technical Paper

Atomization in High-Pressure Die Casting - Step 2 Simulation of Atomized Flow of Molten Aluminum by LES-VOF Method

2018-04-03
2018-01-1393
The atomization of molten aluminum when injected during high-pressure die casting is analyzed to determine its effect in enhancing the strength of the product being cast. In the previously reported first step of this study, molten aluminum was injected into open space and its atomization was observed photographically. Now in the second step of the study, a simulation is conducted to determine how the molten aluminum becomes atomized at the injection nozzle (gate) and how this atomized material flows and fills the cavity. A new simulation method is developed based on large-eddy simulation coupled with the volume-of-fluid method. The simulation system is verified by comparing its output with photographs taken in the first step of the study. Simulations are then conducted using an approximation of a real cavity to visualize how it is filled by the atomized molten aluminum.
Technical Paper

CFD Analysis of Lubricant Fluid Flow in Automotive Transmission

2014-04-01
2014-01-1772
An analytic technology able to rapidly and accurately predict oil flows and churning torque in a transmission has been developed. The new method uses the finite difference method for analysis; with regard to wall boundaries it reproduces the shapes of physical objects by imparting boundary information to cells. This has made it a simple matter to treat the rotation and meshing of the gears, which form oil flows, and has also reduced the calculation cost. Tests of single-phase and multi-phase flows and churning torque were conducted in order to verify the accuracy of the new method. Calculation results for the flow velocity fields produced by rotating bodies, the trajectory of oil, and the behavior of the surface of the fluid displayed a good correlation with test results. Considering air entrainment in the oil, the ability of the method to reproduce these phenomena at high speeds of rotation was also increased.
Technical Paper

Chrysler 45RFE a New Generation Light Truck Automatic Transmission

1999-03-01
1999-01-1260
The 45RFE is a new generation electronically controlled rear wheel drive automatic transmission. It employs real-time feedback, closed-loop modulation of shift functions to achieve outstanding shift quality and to meet demanding durability goals. It uses no shift valves; all friction element applications are effected with high-flow electro-hydraulic solenoid valves. A unique gear train arrangement of three planetary carriers allows all sun gears and annulus gears to have the same number of teeth respectively and use a common pinion gear in all carriers, resulting in significant manufacturing simplification. The three-planetary system is designed for four forward ratios of 3.00, 1.67, 1.00 and 0.75 and one reverse gear ratio equal to the low gear ratio. A fifth ratio of 1.50 is used only in certain kick-down shift sequences for highway passing. A sixth forward ratio, an additional overdrive ratio of 0.67, is available in the hardware.
Technical Paper

Chrysler 45RFE: A New Generation Real-Time Electronic Control RWD Automatic Transmission

1999-03-01
1999-01-0755
The 45RFE is a new generation electronically controlled rear wheel drive transmission. It employs real-time feedback, closed-loop modulation of shift functions to achieve excellence in shift quality and to meet severe durability goals. The 45RFE uses no shift valves; all friction element applications are effected with high-flow electro-hydraulic solenoid valves. A unique gear train arrangement of three planetary carriers allows all sun and annulus gears to have identical numbers of teeth and to use common pinion gears in all carriers. This results in substantial manufacturing simplification. The three-planetary system is designed for four forward ratios of 3.00, 1.67, 1.00 and 0.75 and one reverse gear ratio equal to the low gear ratio. A fifth ratio of 1.50 is used mainly in certain kick-down shift sequences for highway passing. A sixth forward ratio, an additional overdrive ratio of 0.67, is available in the hardware.
Journal Article

Consideration about Meshing of Worm Gear Based on MUB (Meshing Under Base-Circle) Theory for EPS

2014-04-01
2014-01-0058
This paper will discuss the stress reduction of the worm wheel for an electric power steering (EPS) system. The research discussed in this paper focused on the worm wheel, the EPS component that determines the maximum diameter of the system. If the stress of the worm wheel could be reduced without increasing in size, it would be possible to reduce the size of the worm wheel and EPS system. In order to reduce the stress of the worm wheel, the conventional design method has extended the line-of-action toward outside of the worm wheel to increase the contact ratio of the gears and these method lead to an increase in the outer diameter. In order to address this issue, past research proposes the basic concept to extend line-of-action toward the inside of the worm wheel. And this new meshing theory was named MUB (Meshing Under Base-circle) theory. In this paper, characteristics of meshing of the gear formed by MUB theory are determined in more detail.
Technical Paper

Corrosion Resistance of Gas Shielded Metal Arc Welds with E-coat

1997-02-24
971008
Gas shielded metal arc welding is generally applied to automobile chassis parts. However, the weld parts with the E-coat show poor corrosion resistance. Therefore, the corrosion mechanism of the weld parts was investigated. The results found two reasons why the weld parts corroded faster than the non weld parts:(1)inadequate phosphating (2)defects in the E-coat. After detailed investigation, it was clarified that the major cause of poor corrosion resistance was the defects in the E-coat caused by slags formed on the surface of the weld bead. Therefore the amount of slag has to be decreased to improve the corrosion resistance. The effect of shielding gas composition on the amount of slag was then investigated. In the case of Ar and oxidizing gas mixture, the corrosion resistance improved as the oxidizing gas content decreased. This was due to the reduction of slags.
Technical Paper

Design Method of Motorcycle Exhaust Sound Fitting to Vehicle Concept Regardless of Engine Configurations

2014-11-11
2014-32-0121
Recently, it has been widely practiced in motorcycle developments that the same type of engine is commonly applied to various vehicle categories. Accordingly, it is drawing more attention to develop the methodology for creating the best suitable sound for each individual vehicle category regardless of restriction from the engine configurations. In our study, we aimed to establish a procedure to control exhaust sounds beyond the borders across the inherent sound qualities originated from their engine configurations. Firstly, we conducted subjective tests in order to extract essential factors, depicted by adjectives that appear in verbal expressions commonly used to illustrate sound qualities in general. The results enabled us to conduct quantitative evaluations of the exhaust sound qualities of various motorcycles. Next, we clarified the relationships among the individual factors of sound qualities under our study and physical parameters in waveforms of the sounds.
Technical Paper

Determining Blockage Corrections in Climatic Wind Tunnels Using CFD

2003-03-03
2003-01-0936
Computational Fluid Dynamics (CFD) was applied to investigate blockage effects (or velocity correction) in a climatic wind tunnel (CWT) test environment. Different blockage effects in the CWT were modeled using four simplified vehicles that approximated a sedan, an SUV, a pickup truck, and a minivan. Blockage dependence on nozzle size and spacing between the nozzle exit plane (NEP) and the vehicle were also investigated. The study quantified the blockage effect using different correction methods based on vehicle frontal velocity profiles and upper surface pressure traces. The blockage-free solution was also simulated for each vehicle in an ‘open road’ or free air condition. The CFD study revealed that all the test cases resulted in blockage correction factors, defined by Vactual/Vsimulated greater than 1.0. This is a condition in which the uncorrected wind tunnel velocity was higher than the ‘open road’ condition.
Technical Paper

Development of 1600 N/mm2 Class Ultra-High Strength Bolts

2003-03-03
2003-01-1179
1 Many different bolts are employed in automobiles for different purposes and uses, and their strength generally ranges from 700 N/mm2 to 1200 N/mm2. Automobiles face the issue of making improvements in fuel economy as an environmental measure, and there is consequently a requirement to lighten component parts. The creationof higher-strength bolts is an important factor in achieving lighter weight. Increasing the strength, however, can also bring about an increased incidence of delayed fracture, and the conventional solution used to require the application of special steels such as expensive maraging steel. The present development addressed this issue by focusing on high carbon steel rod, which had been considered less susceptible to delayed fracture, although heading was also considered to be difficult. Heading techniques were therefore devised that made it possible not only to form bolts from this material, but also to provide satisfactory strength.
Technical Paper

Development of Compact Fuel Pump Module for Motorcycles

2008-09-09
2008-32-0039
A compact, low-cost fuel pump module has been developed for use in motorcycles with a small-displacement engine. Various considerations are given to make the module as compact as possible. The pump motor, which is one of the major component parts, is down-sized specifically for applications to small-displacement engines. The pressure regulator uses a simple construction consisting only of a ball and a spring without a diaphragm. Especially noteworthy is that with the volume reduced by approximately 40% from the conventional pressure regulator while using the construction that reduces self-excited vibrations caused by fuel pressure pulsations, the pressure regulator contributes significantly to the down-sizing and cost reduction of the module. Furthermore, the down-sized module remarkably reduces the size of fuel pump mount surface, allowing a modification from the flat-surface sealing to the radial sealing.
X