Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Concept for Occupant Deceleration Control during Vehicle Crashes -Study of the Vehicle Mass Separation Model

2003-10-27
2003-01-2761
In order to minimize occupant injury in a vehicle collision, an approach was attempted to address this issue by optimizing the waveform of the vehicle body deceleration to reduce the maximum deceleration applied to the occupant. A previous study has shown that the mathematical solution to the optimal vehicle deceleration waveform comprised three stages: high deceleration, negative deceleration, and constant deceleration. A kinematic model with separated mass of the vehicle was devised to generate the optimal vehicle deceleration waveform comprising three stages including a one with negative deceleration in the middle. The validity of this model has been confirmed by a mathematical study on a one-dimensional lumped mass model. The optimal vehicle deceleration waveform generated by this method was then validated by a three-dimensional dummy simulation.
Technical Paper

A New Concept for Occupant Deceleration Control in a Crash - Part 2

2003-03-03
2003-01-1228
In order to minimize occupant injury in a vehicle crash, an approach was attempted to address this issue by making the wave form of vehicle body deceleration optimal to lower the maximum value of the occupant deceleration. Prior study shows that the mathematical solutions for the optimal vehicle deceleration wave form feature consisting of three aspects: high deceleration, negative deceleration, and constant deceleration. A kinematical model which has separated mass of the vehicle was devised to generate an optimal vehicle deceleration wave form which consists of three segments including a segment of negative deceleration in the middle. The validity of this model has been certified by a mathematical study by using a one-dimensional lumped mass model. The effectiveness of the optimal vehicle deceleration wave form generated by this method was validated by a simulation with a three-dimensional dummy.
Technical Paper

A New Way of Electrical/Electronic Systems Endurance Testing of Vehicles in a Real World Environment Prior to Production Launch

2001-03-05
2001-01-1101
With the increasing emphasis on Systems Engineering, there is a need to ensure that Electrical/Electronic (E/E) Systems Endurance Testing of vehicles, in a real world environment, prior to Production Launch, is performed in a manner and at a technological level that is commensurate with the high level of electronics and computers in contemporary vehicles. Additionally, validating the design and performance of individual standalone electronic systems and modules “on the bench” does not guarantee that all the permutations and combinations of real-world hardware, software, and driving conditions are taken into account. Traditional Proving Ground (PG) vehicle testing focuses mainly on powertrain durability testing, with only a simple checklist being used by the PG drivers as a reminder to cycle some of the electrical components such as the power window switches, turn signals, etc.
Technical Paper

A Study of Compatibility Test Procedure in Frontal Impact

2003-05-19
2003-06-0168
The purpose of this study is to examine compatibility test procedures proposed in the IHRA Vehicle Compatibility Working Group. Various crash tests were conducted with different vehicle weights and stiffness in our previous study, and each of the compatibility problems, namely mass; stiffness and geometric incompatibility were identified in these tests. In order to improve the compatibility, it is necessary to evaluate and control relevant vehicle characteristics of compatibility in test procedures. According to the IHRA study, relevant aspects for compatibility in frontal impact are: Good structural interaction; Frontal stiffness matching; Maintaining passenger compartment integrity; Control the deceleration time histories of impacting cars.
Technical Paper

A Study on Vehicle Elastomer Mount Preloading and Impact Response with Test Validation

2005-04-11
2005-01-1415
A variety of elastomer mounts are being used for vehicles as isolators/dampers between body and frame, on the engine cradle, etc. These vehicle flexible mounts, made of mainly rubber materials and housed in a metallic tube, are indispensable components affecting the quality of the vehicle ride, noise and vibration. In the auto industry, the usual practice when designing vehicle flexible mounts is to minimally reflect impact considerations in the mount design features. However, in most high-speed vehicle crash events where the mounts fail, the crash responses, including occupant injury severity, are known to be very different from the responses of non-failure cases. Even in low-speed vehicle impact cases, excessive deformation of the flexible mounts could cause significant variance in the compliance of the vehicle acceleration level to the air-bag firing and timing threshold requirements.
Technical Paper

A System for the Modal Analysis of Exhaust Emissions from Motorcycles

1981-02-01
810297
Devices for use in control of exhaust emissions have become indispensable to motorcycles. In order to evaluate quantitatively the effect of each device, the modal analysis system has to be required. The Modal Analysis System is one that classifies any driving schedule which is used for emissions measurement into four modes: idle, acceleration, cruise, and deceleration; then measures the emissions continuously using a mini-computer which accumulates the results of the analysis by mode. Instead of CO2 tracer method, we introduced the method of diluted exhaust gas measurement. In order for the system to produce reliable measurements, the accuracy of the total installation must be ensured. This paper describes the improvements of accuracy of analysers, technique on handling delay time and the verifications on the modal analysis system.
Technical Paper

A new concept for occupant deceleration control in a crash

2000-06-12
2000-05-0209
In order to minimize occupant injury in a vehicle crash, an approach was attempted to address this issue by making the wave form of vehicle body deceleration (deceleration curve) optimal to lower the maximum deceleration value applied to the occupant. A study with a one-dimensional, two-mass model was conducted to the kinetic mechanism between the body deceleration curve and the responding occupant''s motion while finding a mathematical solution for the optimal body deceleration curve. A common feature of the derived mathematical solutions is that they consist of three aspects: high deceleration, low or negative deceleration, and constant deceleration. This was demonstrated by simulation with a three-dimensional dummy. The results show that the response of the dummy closely agrees with that of the one-dimensional, two-mass model, thus proving the adequacy of the mathematical solution, and that occupant injury was reduced.
Technical Paper

Acceleration of Iterative Vibration Analysis for Form Changes in Large Degrees-of-Freedom Engine Model

2018-04-03
2018-01-1290
Operational analysis of automotive engines using flexible multi-body dynamics is increasingly important from the viewpoint of multi-objective optimization as it can predict not only vibration, but also stress and friction at the same time. Still, the finite element (FE) models used in this analysis have large degrees-of-freedom, so iterative calculation takes a lot of time when there is form change. This research therefore describes a technique that applies a modal differential substructure method (a technique that reduces the degrees of freedom in a FE model) that can simulate form changes in FE models by changing modal mass and modal stiffness in reduced models. By using this method, non-parametric form change in FE model can be parametrically simulated, so it is possible to speed up repeated vibration calculations. In the proposed method, FE model is finely divided for each form change design area, and a reduced model of that divided structure is created.
Technical Paper

Air Bag Loading on In-Position Hybrid III Dummy Neck

2001-03-05
2001-01-0179
The Hybrid III family of dummies is used to estimate the response of an occupant during a crash. One recent area of interest is the response of the neck during air bag loading. The biomechanical response of the Hybrid III dummy's neck was based on inertial loading during crash events, when the dummy is restrained by a seat belt and/or seat back. Contact loading resulting from an air bag was not considered when the Hybrid III dummy was designed. This paper considers the effect of air bag loading on the 5th percentile female Hybrid III dummies. The response of the neck is presented in comparison to currently accepted biomechanical corridors. The Hybrid III dummy neck was designed with primary emphasis on appropriate flexion and extension responses using the corridors proposed by Mertz and Patrick. They formulated the mechanical performance requirements of the neck as the relationship between the moment at the occipital condyles and the rotation of the head relative to the torso.
Technical Paper

Analysis of CVT Element Vibration by In-Situ Measurement

2020-04-14
2020-01-0906
When the belt contacts a pulley in a pushing belt-type CVT, vibration is generated by frictional force due to rubbing between the individual elements that are components of the belt, which is said to increase wear and noise. The authors speculated that the source of that vibration is misalignment of the secondary pulley and primary pulley V-surfaces. To verify that phenomenon, a newly developed micro data logger was attached to an element of a mass-produced metal pushing V-belt CVT and the acceleration was measured at rotations equal to those at drive (1000 to 2500 r/m). In addition, the results of calculations using a behavior analysis model showed that changes in pulley misalignment influence element vibration, and that the magnitude of the vibration is correlated to the change in the metal pushing V-belt alignment immediately before the element contacts the pulley.
Technical Paper

Analysis of Factors Influencing Side Impact Compatibility

2009-04-20
2009-01-1430
To examine factors influencing side impact compatibility, as a first step, car-to-car tests were conducted to investigate the effect of sill interaction. As a result, it was found that sill interaction had a less significant effect on side impact performance than reducing the load aligned with the dummy. In addition, a series of Mobile Deformable Barrier (MDB) tests were performed to corroborate the conclusions of the car-to-car tests. Comparison of the results of these MDB tests showed that the effect of reducing loading aligned with the driver dummy is more significant than that of engagement with the target car's sill, which is consistent with the car-to-car test results.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Body/Chassis Dynamic Response Under Experimental Modal Test

2005-05-16
2005-01-2463
Mode management is an essential part of the design process for NVH performance. System resonances must be sufficiently separated to minimize interaction from source inputs and each other [1]. Such resonances are typically determined through experimental modal testing conducted in a lab environment under controlled and repeatable conditions. Global vehicle and suspension system response demonstrate soft nonlinear behavior, however. Their resonant frequencies may thus decrease under on-road input not reproducible in a lab environment. Subsequently, mode management charts derived from lab testing may not be representative of the vehicle's on-road dynamic response. This paper presents modal model determination methodologies, and examines suspension system and vehicle global dynamic response under lab modal test and operating conditions. Vehicle suspension modes measured under static and dynamic (rolling) conditions will be compared.
Technical Paper

Clamp Load Consideration in Fatigue Life Prediction of a Cast Aluminum Wheel Using Finite Element Analysis

2004-03-08
2004-01-1581
Loads generated during assembly may cause significant stress levels in components. Under test conditions, these stresses alter the mean stress which in turn, alters the fatigue life and critical stress area of the components as well. This paper describes the Finite Element Analysis (FEA) procedure to evaluate behavior of a cast aluminum wheel subjected to the rotary fatigue test condition as specified in the SAE test procedure (SAE J328 JUN94). Fatigue life of the wheel is determined using the S-N approach for a constant reversed loading condition. In addition, fatigue life predictions with and without clamp loads are compared. It is concluded that the inclusion of clamp load is necessary for better prediction of the critical stress areas and fatigue life of the wheel.
Technical Paper

Conceptual Simulation for Plug-In HEV at Early Stage of Development

2015-04-14
2015-01-0980
This study aims to build a conceptual simulation used at the early stage of PHEV development. This simulation enables to design vehicle concept and fundamental architecture with regard to fuel economy, vehicle acceleration and electric range. The model based on forward-looking method comprises of plant-model and controller-model which are made by one-dimensional simulation tool “GT-SUITE” and Matlab/SIMULINK respectively. In order to automatically couple between them and to implement iterative calculations of SOC (State-of-Charge) convergence, optimization and automation tool “modeFRONTIER” was used. As a case study of this simulation, we adopted series-parallel type plug-in hybrid electric vehicle (PHEV) and demonstrated the results on fuel economy of a legislative driving cycle and 0-60mph vehicle acceleration. Moreover, procedures to identify component specifications meeting vehicle targets and requirements at the early stage of vehicle development were concretely described.
Technical Paper

Development and Validation of the Finite Element Model for the Human Lower Limb of Pedestrians

2000-11-01
2000-01-SC22
An impact test procedure with a legform addressing lower limb injuries in car-pedestrian accidents has been proposed by EEVC/WG17. Although a high frequency of lower limb fractures is observed in recent accident data, this test procedure assesses knee injuries with a focus on trauma to the ligamentous structures. The goal of this study is to establish a methodology to understand injury mechanisms of both ligamentous damages and bone fractures in car-pedestrian accidents. A finite element (FE) model of the human lower limb was developed using PAM-CRASH™. The commercially available H-Dummy™ lower limb model developed by Nihon ESI for a seated position was modified to represent the standing posture of pedestrians. Mechanical properties for both bony structures and knee ligaments were determined from our extensive literature survey, and were carefully implemented in the model considering their strain rate dependency in order to simulate the dynamic response of the lower limb accurately.
Technical Paper

Development of Electrostatic Capacity Type Steering Sensor Using Conductive Leather

2020-04-14
2020-01-1209
Today’s progress in electronic technologies is advancing the process of making vehicles more intelligent, and this is making driving safer and more comfortable. In recent years, numerous vehicles equipped with high-level Advance Driving Assist System (ADAS) have been put on the market. High-level ADAS can detect impending lane deviation, and control the vehicle so that the driver does not deviate from the lane. Lane departure prevention systems are able to detect imminent departure from the road, allowing the driver to apply control to prevent lane departure. These systems possess enormous potential to reduce the number of accidents resulting from road departure, but their effectiveness is highly reliant on their level of acceptance by drivers.
Technical Paper

Development of High-Power-Density DC-DC Converter Using Coupled Inductors for Clarity Plug-In Hybrid

2018-04-03
2018-01-0458
Honda has developed an electric powertrain for a 2017 plug-in hybrid vehicle using its second-generation SPORT HYBRID i-MMD powertrain system as a base. The application of the newly developed powertrain system realizes a long all-electric range (AER), allowing operation as an EV for almost all everyday driving scenarios, with dynamic performance making it possible for the vehicle to operate as an EV across the entire speed range, up to a maximum speed of 100 mph. The amount of assist provided by power from the batteries during acceleration has been increased, helping to downsize the engine while also balancing powerful acceleration with quietness achieved by controlling racing of the engine. In order to realize this EV performance with the second-generation SPORT HYBRID i-MMD system as the base, it was necessary to increase the power output of the DC-DC converter, taking restrictions on space into consideration.
Technical Paper

Development of JASO 2-Stroke Engine Oil Standards

1993-11-01
931938
The 2-Stroke Engine Oil Subcommittee of the JSAE has developed the following five JASO (Japan Automobile Standards Organization) 2-Stroke Gasoline Engine Oil Quality Standards for motorcycle, utility and outboard engines: 1) JASO M340-92 Lubricity test procedure for evaluating two stroke gasoline engine oils 2) JASO M341-92 Detergency test procedure for evaluating two stroke gasoline engine oils 3) JASO M342-92 Smoke test procedure for evaluating two stroke gasoline engine oils 4) JASO M343-92 Exhaust system blocking test procedure for evaluating two stroke gasoline engine oils 5) JASO M345-93 Two stroke gasoline engine oils These standards consist of four kinds of engine test procedure and a classification system which includes three physico chemical properties of an oil.
Journal Article

Development of the Next-Generation Steering System (Development of the Twin Lever Steering for Production Vehicle)

2011-04-12
2011-01-0557
Looking back on steering systems in more than a hundred years that have passed since the introduction of the automobile, it can be seen that original method of controlling cars pulled by animals such as horses was by reins, and early automobiles had a single push-pull bar (tiller steering). That became the steering wheel, and an indirect steering mechanism by rotating up and down caught on. While the steering wheel is the main type of steering system in use today, the team have developed the Twin Lever Steering (TLS) system controlled mainly by bi-articular muscles, making use of advancements in science and technology and bioengineering to develop based on bioengineering considerations as shown in Fig. 1. The objective of that is to establish the ultimate steering operation system for drivers. In the first report, the authors reported on results found by using race-car prototypes as shown in Fig. 2.
X