Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1-D Simulation Model Developed for a General Purpose Engine

2016-11-08
2016-32-0030
In recent years, improvements in the fuel economy and exhaust emission performance of internal combustion engines have been increasingly required by regulatory agencies. One of the salient concerns regarding general purpose engines is the larger amount of CO emissions with which they are associated, compared with CO emissions from automobile engines. To reduce CO and other exhaust emissions while maintaining high fuel efficiency, the optimization of total engine system, including various design parameters, is essential. In the engine system optimization process, cycle simulation using 0-D and 1-D engine models are highly useful. To define an optimum design, the model used for the cycle simulation must be capable of predicting the effects of various parameters on the engine performance. In this study, a model for predicting the performance of a general purpose SI (Spark Ignited) engine is developed based on the commercially available engine simulation software, GT-POWER.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A New Variable Valve Engine Applying Shuttle Cam Mechanism

1992-02-01
920450
Variable-valve-actuation mechanism is considered to be one of the most suitable solutions to realize the compatibility between higher power output and performances in the practical speed range. A new variable-valve-actuation mechanism named “Shuttle Cam” was designed and studied. In this mechanism which was applied to a conventional motorcycle engine with rocker arms and gear-train-driven valve system, the cam gears move along the idler gear. And cam shafts simultaneously slide along the rocker-arm slipper surfaces which are concentric with the idler gear. Consequently valve lift varies continuously in accordance with the alteration in the rocker-arm lever ratio and the cam phasing changes simultaneously in accordance with the cam gear rotation. Result of the experiments has confirmed that the mechanism functions accurately even at high speeds up to 10,000 rpm and some improvements were achieved in power output, fuel consumption, idling quality, and exhaust-noise level.
Technical Paper

A Statistical Tire Model Concept - Applications to Vehicle Development

2015-04-14
2015-01-1578
The tires are one of the most important parts of the vehicle chassis, as they significantly influence aspects such as vehicle's directional stability, braking performance, ride comfort, NVH, and fuel consumption. The tires are also a part whose size affects the vehicle's essential specifications such as wheelbase and track width. The size of the tires should therefore be determined in the initial stage of vehicle development, taking into account whether the size allows the vehicle to achieve the targeted overall performance. In estimations of vehicle performance, computer simulation plays more of an important role, and simulated tire models are designed to reproduce the measured tire characteristics of existing tires. But to estimate the chassis performance with various tire sizes or with tires of uncommon sizes, the prevailing modeling approach, “individual models for individual tires,” would not function well because of limited ability to expand tire models to unfamiliar sizes.
Technical Paper

A Study of High Power Output Diesel Engine with Low Peak Cylinder Pressure

2010-04-12
2010-01-1107
This study examined a high-speed, high-powered diesel engine featuring a pent-roof combustion chamber and straight ports, with the objective of improving the specific power of the engine while minimizing any increase in the maximum cylinder pressure (Pmax). The market and contemporary society expect improvements in the driving performance of diesel-powered automobiles, and increased specific power so that engine displacement can be reduced, which will lessen CO2 emissions. When specific power is increased through conventional methods accompanied with a considerable increase in Pmax, the engine weight is increased and friction worsens. Therefore, the authors examined new technologies that would allow to minimize any increase in Pmax by raising the rated speed from the 4000 rpm of the baseline engine to 5000 rpm, while maintaining the BMEP of the baseline engine.
Technical Paper

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

2012-04-16
2012-01-0365
Manganese oxides show high catalytic activity for CO and HC oxidation without including platinum group metals (PGM). However, there are issues with both thermal stability and resistance to sulfur poisoning. We have studied perovskite-type YMnO₃ (YMO) with the aim of simultaneously achieving both activity and durability. This paper describes the oxidation activity of PGM-free Ag/i-YMO, which is silver supported on improved-YMO (i-YMO). The Ag/i-YMO was obtained by the following two methods. First, Mn⁴+ ratio and specific surface area of YMO were increased by optimizing composition and preparation method. Second, the optimum amount of silver was supported on i-YMO. In model gas tests and engine bench tests, the Ag/i-YMO catalyst showed the same level of activity as that of the conventional Pt/γ-Al₂O₃ (Pt = 3.0 g/L). In addition, there was no degradation with respect to either heat treatment (700°C, 90 h, air) or sulfur treatment (600°C to 200°C, total 60 h, 30 ppm SO₂).
Video

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

2012-06-18
Currently, two consolidated aftertreatment technologies are available for the reduction of NOx emissions from diesel engines: Urea SCR (Selective Catalytic Reduction) systems and LNT (Lean NOx Trap) systems. Urea SCR technology, which has been widely used for many years at stationary sources, is becoming nowadays an attractive alternative also for light-duty diesel applications. However, SCR systems are much more effective in NOx reduction efficiency at high load operating conditions than light load condition, characterized by lower exhaust gas temperatures.
Technical Paper

A Study of Vehicle Equipped with Non-Throttling S.I. Engine with Early Intake Valve Closing Mechanism

1993-03-01
930820
To enable non-throttling operation of gasoline S.I. engine, we have manufactured engines equipped with a newly developed Hydraulic Variable-valve Train (HVT), which can vary its intake-valve closing-timing freely. The air-intake control ability of HVT engine is equivalent to conventional throttling engines. Combustion becomes unstable, however, under non-throttling operation at idling. For the countermeasure, newly designed combustion chamber has been developed. The reduction of pumping loss by the HVT depends on engine speed rather than load, and amounts to about 80 % maximum. A conventional engine-management system is not applicable for non-throttling operation. Therefore, new management system has been developed for load control.
Technical Paper

A System for the Modal Analysis of Exhaust Emissions from Motorcycles

1981-02-01
810297
Devices for use in control of exhaust emissions have become indispensable to motorcycles. In order to evaluate quantitatively the effect of each device, the modal analysis system has to be required. The Modal Analysis System is one that classifies any driving schedule which is used for emissions measurement into four modes: idle, acceleration, cruise, and deceleration; then measures the emissions continuously using a mini-computer which accumulates the results of the analysis by mode. Instead of CO2 tracer method, we introduced the method of diluted exhaust gas measurement. In order for the system to produce reliable measurements, the accuracy of the total installation must be ensured. This paper describes the improvements of accuracy of analysers, technique on handling delay time and the verifications on the modal analysis system.
Journal Article

Ag-Type PM Oxidation Catalyst with Nd Added to Increase Contact Property between PM and Catalyst

2018-04-03
2018-01-0328
Honda diesel engine vehicles that go on the market in 2018 will be equipped with a newly developed silver (Ag)-type catalyzed diesel particulate filter (cDPF). Ag has high particulate matter (PM) oxidation performance, but conventional catalyst-carrying methods cause weak contact property between PM and Ag; therefore, the newly Ag-type cDPF was developed on the concept of enhancing the property of contact between PM and the catalyst to realize contact property enhancement at the macro, meso, and nano scales. As a result, the newly developed catalyst showed an enhancement of T90 performance by a factor of approximately 2 relative to the conventional Ag-type catalyst in fresh condition. Durability in the environment of an automobile in use was examined through hydrothermal aging, lean-rich (L/R) aging, sulfur (S) poisoning, and ash deposition. The results have confirmed that hydrothermal aging is the greatest factor in deterioration.
Technical Paper

An Advanced Diesel Fuels Test Program

2001-03-05
2001-01-0150
This paper reports on DaimlerChrysler's participation in the Ad Hoc Diesel Fuels Test Program. This program was initiated by the U.S. Department of Energy and included major U.S. auto makers, major U.S. oil companies, and the Department of Energy. The purpose of this program was to identify diesel fuels and fuel properties that could facilitate the successful use of compression ignition engines in passenger cars and light-duty trucks in the United States at Tier 2 and LEV II tailpipe emissions standards. This portion of the program focused on minimizing engine-out particulates and NOx by using selected fuels, (not a matrix of fuel properties,) in steady state dynamometer tests on a modern, direct injection, common rail diesel engine.
Technical Paper

Analysis of the Pressure Drop Increase Mechanism by Ash Accumulated of Coated GPF

2019-04-02
2019-01-0981
With accelerating exhaust gas regulations in recent years, not only CO / HC / NOx but also PN regulation represented by Euro 6 d, China 6 are getting stricter. PN reduction by engine combustion technology development also progresses, but considering RDE, PN reduction by after treatment technology is also indispensable. To reduce PN exhausted from the gasoline engine, it is effective to equip GPF with a filter structure. Considering the installation of GPF in limited space, we developed a system that so far replaces the second TWC with GPF for the TWC 2 bed system. In order to replace the second TWC with GPF, we chose the coated GPF with filtering and TWC functions. Since the initial pressure drop and the catalyst amount (purification performance) of coated GPF have a conflicting relationship, we developed the coated GPF that can achieve both the low initial pressure drop and high purification performance.
Journal Article

Application of Electric Servo Brake System to Plug-In Hybrid Vehicle

2013-04-08
2013-01-0697
An electric servo brake system applied for use on electric vehicles was applied for use on plug-in hybrid vehicles in order to achieve fuel-savings together with good brake feel and enhanced operability for plug-in hybrid vehicles. The electric servo brake system is made up of highly accurate braking pressure control that functions cooperatively with regenerative brakes together with a structure in which pedal force is not influenced by braking pressure control. The configuration of these components enabled good braking feel even when the power train was being switched from one drive mode to another. Automated pressurization functions that are intended for plug-in hybrid vehicles and that operate with electric servo brake systems were also developed. These developed functions include stall cooperative control that functions cooperatively with the power train, regenerative coordinate adaptive cruise control, and hill-start assist.
Technical Paper

Cam-Phasing Optimization Using Artificial Neural Networks as Surrogate Models-Maximizing Torque Output

2005-10-24
2005-01-3757
Variable Valve Actuation (VVA) technology provides high potential in achieving high performance, low fuel consumption and pollutant reduction. However, more degrees of freedom impose a big challenge for engine characterization and calibration. In this study, a simulation based approach and optimization framework is proposed to optimize the setpoints of multiple independent control variables. Since solving an optimization problem typically requires hundreds of function evaluations, a direct use of the high-fidelity simulation tool leads to the unbearably long computational time. Hence, the Artificial Neural Networks (ANN) are trained with high-fidelity simulation results and used as surrogate models, representing engine's response to different control variable combinations with greatly reduced computational time. To demonstrate the proposed methodology, the cam-phasing strategy at Wide Open Throttle (WOT) is optimized for a dual-independent Variable Valve Timing (VVT) engine.
Technical Paper

Cam-phasing Optimization Using Artificial Neural Networks as Surrogate Models-Fuel Consumption and NOx Emissions

2006-04-03
2006-01-1512
Cam-phasing is increasingly considered as a feasible Variable Valve Timing (VVT) technology for production engines. Additional independent control variables in a dual-independent VVT engine increase the complexity of the system, and achieving its full benefit depends critically on devising an optimum control strategy. A traditional approach relying on hardware experiments to generate set-point maps for all independent control variables leads to an exponential increase in the number of required tests and prohibitive cost. Instead, this work formulates the task of defining actuator set-points as an optimization problem. In our previous study, an optimization framework was developed and demonstrated with the objective of maximizing torque at full load. This study extends the technique and uses the optimization framework to minimize fuel consumption of a VVT engine at part load.
Technical Paper

Design of High Performance Coated GPF with 2D/3D Structure Analysis

2019-04-02
2019-01-0977
In recent years along with stringent the regulations, vehicles equipped with gasoline particulate filter (GPF) have started to launch. Compared to bare GPF, coated GPF (cGPF) requires not only PN filtration efficiency, low pressure drop, but also purification performance. In the wall flow type cGPF having a complicated the pore shape, the pore structure further irregularly changes depending on the coated state of the catalyst, so it is difficult to understand the matter of in-wall. In order to advance of cGPF function, it was researched that revealing the relevance between pore structure change in the wall and GPF function. Therefore, to understand the catalyst coated state difference, cGPF of several coating methods were prepared, and their properties were evaluated by various analyses, and performance was tested.
Technical Paper

Development of Aluminum Powder Metal Composite Material Suitable for Extrusion Process used for Cylinder Sleeves of Internal Combustion Engines

2014-04-01
2014-01-1002
There are a couple of ways to manufacture aluminum cylinder blocks that have a good balance between productivity and abrasion resistance. One of them is the insert-molding of a sleeve made of PMC (Powder Metal Composite) by the HPDC (High Pressure Die Casting) method. However, in this method, cracks are apt to occur on the surface when the PMC sleeve is extruded and that has been a restriction factor against higher extrusion speed. The authors attempted to raise this extrusion temperature by eliminating the Cu additive process from the aluminum alloy powder in order to raise its melting point by approximately 50 °C. This enabled the wall of the extruded sleeve to be thinner and the extrusion speed to be higher compared to those of a conventional production method while avoiding the occurrence of surface cracks.
Technical Paper

Development of Electronically Controlled Belt-type CVT for Motorcycles

2005-10-12
2005-32-0024
An electronically controlled belt-type CVT (Continuously Variable Transmission) has been developed for scooter type two-wheeled vehicles. Related to two-wheeled vehicles, the electronically controlled belt-type CVT has advantages over the conventional belt-type CVT, such as more compact and lighter weight. This was achieved by developing a new rubber belt-type. The new rubber belt-type CVT uses a rubber belt with high friction coefficient and pulleys made of aluminum. To obtain good shifting characteristics, the desired speed ratio related to throttle opening and drive speed is calculated. When moving, the actual speed ratio automatically adjusts to the desired value. For the shift modes, three shift modes, two automatic modes and one manual mode with six-speeds were prepared. The electronically controlled CVT increased the range of usable engine speeds compared to the conventional belt-type CVT. Therefore good drivability is maintained.
Technical Paper

Development of Extruded Electrically Heated Catalyst System for ULEV Standards

1997-02-24
971031
Into the early-part of the next century, automotive emission standards are becoming stricter around the world. The electrically-heated catalyst (EHC) is well known as an effective technology for the reduction of cold-start hydrocarbon emissions without a significant increase in back pressure. Our extruded, alternator powered EHC (APEHC) manufactured with a unique canning method and equipped with a reliable, water proof electrode has demonstrated excellent durability and reliability, as stated in our previous SAE paper (#960340). The APEHC system discussed in this paper has achieved the Ultra-Low-Emission Vehicle (ULEV) standards, after 100,000 miles of fleet testing, without any failure. This is the final milestone in addressing the EHC as a realistic-production technology for ULEV. With the ability to meet ULEV/Stage III emission targets without a significant increase in back pressure, the EHC will be applied to an especially high performance vehicle with a large displacement engine.
Technical Paper

Development of HPDC Alloy for Motorcycle Wheel Using Recycle Aluminum

2013-10-15
2013-32-9111
The new die cast (HPDC) wheel alloy has been developed using recycled aluminum to attain considerable reduction of energy at the time of material production to make large contribution to the reduction of CO2 emissions. The material for motorcycle body parts, especially for wheels, requires a sufficient elongation property. However, when recycled aluminum, which contains large amount of impurities, is used as main raw material, the intermetallic compounds crystalize out and the elongation property is deteriorated. Accordingly, we firstly made the investigations on the elements contained in a recycled aluminum and it was clarified that the elongation property was correlated to the shape of crystallized iron-based intermetallic compounds.
X