Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1-D Simulation Model Developed for a General Purpose Engine

2016-11-08
2016-32-0030
In recent years, improvements in the fuel economy and exhaust emission performance of internal combustion engines have been increasingly required by regulatory agencies. One of the salient concerns regarding general purpose engines is the larger amount of CO emissions with which they are associated, compared with CO emissions from automobile engines. To reduce CO and other exhaust emissions while maintaining high fuel efficiency, the optimization of total engine system, including various design parameters, is essential. In the engine system optimization process, cycle simulation using 0-D and 1-D engine models are highly useful. To define an optimum design, the model used for the cycle simulation must be capable of predicting the effects of various parameters on the engine performance. In this study, a model for predicting the performance of a general purpose SI (Spark Ignited) engine is developed based on the commercially available engine simulation software, GT-POWER.
Journal Article

3D-CFD RANS Methodology to Predict Engine-Out Emissions with Gasoline-Like Fuel and Methanol for a DISI Engine

2022-09-16
2022-24-0038
Renewable fuels, such as bio- and e-fuels, are of great interest for the defossilization of the transport sector. Among these fuels, methanol represents a promising candidate for emission reduction and efficiency increase due to its very high knock resistance and its production pathway as e-fuel. In general, reliable simulation tools are mandatory for evaluating a specific fuel potential and optimizing combustion systems. In this work, a previously presented methodology (Esposito et al., Energies, 2020) has been refined and applied to a different engine and different fuels. Experimental data measured with a single cylinder engine (SCE) are used to validate RANS 3D-CFD simulations of gaseous engine-out emissions. The RANS 3D-CFD model has been used for operation with a toluene reference fuel (TRF) gasoline surrogate and methanol. Varying operating conditions with exhaust gas recirculation (EGR) and air dilution are considered for the two fuels.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A Study of High Power Output Diesel Engine with Low Peak Cylinder Pressure

2010-04-12
2010-01-1107
This study examined a high-speed, high-powered diesel engine featuring a pent-roof combustion chamber and straight ports, with the objective of improving the specific power of the engine while minimizing any increase in the maximum cylinder pressure (Pmax). The market and contemporary society expect improvements in the driving performance of diesel-powered automobiles, and increased specific power so that engine displacement can be reduced, which will lessen CO2 emissions. When specific power is increased through conventional methods accompanied with a considerable increase in Pmax, the engine weight is increased and friction worsens. Therefore, the authors examined new technologies that would allow to minimize any increase in Pmax by raising the rated speed from the 4000 rpm of the baseline engine to 5000 rpm, while maintaining the BMEP of the baseline engine.
Technical Paper

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

2012-04-16
2012-01-0365
Manganese oxides show high catalytic activity for CO and HC oxidation without including platinum group metals (PGM). However, there are issues with both thermal stability and resistance to sulfur poisoning. We have studied perovskite-type YMnO₃ (YMO) with the aim of simultaneously achieving both activity and durability. This paper describes the oxidation activity of PGM-free Ag/i-YMO, which is silver supported on improved-YMO (i-YMO). The Ag/i-YMO was obtained by the following two methods. First, Mn⁴+ ratio and specific surface area of YMO were increased by optimizing composition and preparation method. Second, the optimum amount of silver was supported on i-YMO. In model gas tests and engine bench tests, the Ag/i-YMO catalyst showed the same level of activity as that of the conventional Pt/γ-Al₂O₃ (Pt = 3.0 g/L). In addition, there was no degradation with respect to either heat treatment (700°C, 90 h, air) or sulfur treatment (600°C to 200°C, total 60 h, 30 ppm SO₂).
Video

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

2012-06-18
Currently, two consolidated aftertreatment technologies are available for the reduction of NOx emissions from diesel engines: Urea SCR (Selective Catalytic Reduction) systems and LNT (Lean NOx Trap) systems. Urea SCR technology, which has been widely used for many years at stationary sources, is becoming nowadays an attractive alternative also for light-duty diesel applications. However, SCR systems are much more effective in NOx reduction efficiency at high load operating conditions than light load condition, characterized by lower exhaust gas temperatures.
Technical Paper

A System for the Modal Analysis of Exhaust Emissions from Motorcycles

1981-02-01
810297
Devices for use in control of exhaust emissions have become indispensable to motorcycles. In order to evaluate quantitatively the effect of each device, the modal analysis system has to be required. The Modal Analysis System is one that classifies any driving schedule which is used for emissions measurement into four modes: idle, acceleration, cruise, and deceleration; then measures the emissions continuously using a mini-computer which accumulates the results of the analysis by mode. Instead of CO2 tracer method, we introduced the method of diluted exhaust gas measurement. In order for the system to produce reliable measurements, the accuracy of the total installation must be ensured. This paper describes the improvements of accuracy of analysers, technique on handling delay time and the verifications on the modal analysis system.
Journal Article

Ag-Type PM Oxidation Catalyst with Nd Added to Increase Contact Property between PM and Catalyst

2018-04-03
2018-01-0328
Honda diesel engine vehicles that go on the market in 2018 will be equipped with a newly developed silver (Ag)-type catalyzed diesel particulate filter (cDPF). Ag has high particulate matter (PM) oxidation performance, but conventional catalyst-carrying methods cause weak contact property between PM and Ag; therefore, the newly Ag-type cDPF was developed on the concept of enhancing the property of contact between PM and the catalyst to realize contact property enhancement at the macro, meso, and nano scales. As a result, the newly developed catalyst showed an enhancement of T90 performance by a factor of approximately 2 relative to the conventional Ag-type catalyst in fresh condition. Durability in the environment of an automobile in use was examined through hydrothermal aging, lean-rich (L/R) aging, sulfur (S) poisoning, and ash deposition. The results have confirmed that hydrothermal aging is the greatest factor in deterioration.
Technical Paper

An Advanced Diesel Fuels Test Program

2001-03-05
2001-01-0150
This paper reports on DaimlerChrysler's participation in the Ad Hoc Diesel Fuels Test Program. This program was initiated by the U.S. Department of Energy and included major U.S. auto makers, major U.S. oil companies, and the Department of Energy. The purpose of this program was to identify diesel fuels and fuel properties that could facilitate the successful use of compression ignition engines in passenger cars and light-duty trucks in the United States at Tier 2 and LEV II tailpipe emissions standards. This portion of the program focused on minimizing engine-out particulates and NOx by using selected fuels, (not a matrix of fuel properties,) in steady state dynamometer tests on a modern, direct injection, common rail diesel engine.
Technical Paper

An Experimental Investigation of Combustion and Soot Formation of Sprays from Cluster Nozzles for DI Diesel Engines

2009-04-20
2009-01-0855
One of the basic topics in the design of new injection systems for DI Diesel engines is to decrease the soot emissions. A promising approach to minimize soot production are nozzles with clustered holes. A basic idea of the Cluster Configuration (CC) nozzles is to prevent a fuel rich area in the center of the flame where most of the soot is produced, and to minimize the overall soot formation in this way. For this purpose each hole of a standard nozzle is replaced by two smaller holes. The diameter of the smaller holes is chosen so that the flow rate of all nozzles should be equal. The basic strategy of the cluster nozzles is to provide a better primary break up and therefore a better mixture formation caused by the smaller nozzle holes, but a comparable penetration length of the vapor phase due to merging of the sprays. Three possible arrangements of the clustered holes are investigated in this study. Both the cluster angle and the orientation to the injector axis are varied.
Journal Article

Analysis of Cyclic Variation Using Time-Resolved Tomographic Particle-Image Velocimetry

2020-09-15
2020-01-2021
To achieve the strict legislative restrictions for emissions from combustion engines, vast improvements in engine emissions and efficiency are required. Two major impacting factors for emissions and efficiency are the reliable generation of an effective mixture before ignition and a fast, stable combustion process. While the mixture of air and injected fuel is generated by highly three-dimensional, time-dependent flow phenomena during the intake and compression stroke, the turbulent flame propagation is directly affected by the turbulence level in the flow close to the advancing flame front. However, the flow field in the combustion chamber is highly turbulent and subject to cycle-to-cycle variations (CCV). To understand the fundamental mechanisms and interactions, 3D flow measurements with combined high spatial and temporal resolution are required.
Technical Paper

Analysis of Drivability Influence on Tailpipe Emissions in Early Stages of a Vehicle Development Program by Means of Engine-in-the-Loop Test Benches

2020-04-14
2020-01-0373
Due to increasing environmental awareness, standards for pollutant and CO2 emissions are getting stricter in most markets around the world. In important markets such as Europe, also the emissions during real road driving, so called “Real Driving Emissions” (RDE), are now part of the type approval process for passenger cars. In addition to the proceeding hybridization and electrification of vehicles, the complexity and degrees of freedom of conventional powertrains with internal combustion engines (ICE) are also continuing to increase in order to comply with stricter exhaust emission standards. Besides the different requirements placed on vehicle emissions, the drivability capabilities of passenger vehicles desired by customers, are essentially important and vary between markets.
Journal Article

Analysis of the Emission Conversion Performance of Gasoline Particulate Filters Over Lifetime

2019-09-09
2019-24-0156
Gasoline particulate filters (GPF) recently entered the market, and are already regarded a state-of-the-art solution for gasoline exhaust aftertreatment systems to enable EU6d-TEMP fulfilment and beyond. Especially for coated GPF applications, the prognosis of the emission conversion performance over lifetime poses an ambitious challenge, which significantly influences future catalyst diagnosis calibrations. The paper presents key-findings for the different GPF application variants. In the first part, experimental GPF ash loading results are presented. Ash accumulates as thin wall layers and short plugs, but does not penetrate into the wall. However, it suppresses deep bed filtration of soot, initially decreasing the soot-loaded backpressure. For the emission calibration, the non-linear backpressure development complicates the soot load monitoring, eventually leading to compromises between high safety against soot overloading and a low number of active regenerations.
Technical Paper

Analysis of the Pressure Drop Increase Mechanism by Ash Accumulated of Coated GPF

2019-04-02
2019-01-0981
With accelerating exhaust gas regulations in recent years, not only CO / HC / NOx but also PN regulation represented by Euro 6 d, China 6 are getting stricter. PN reduction by engine combustion technology development also progresses, but considering RDE, PN reduction by after treatment technology is also indispensable. To reduce PN exhausted from the gasoline engine, it is effective to equip GPF with a filter structure. Considering the installation of GPF in limited space, we developed a system that so far replaces the second TWC with GPF for the TWC 2 bed system. In order to replace the second TWC with GPF, we chose the coated GPF with filtering and TWC functions. Since the initial pressure drop and the catalyst amount (purification performance) of coated GPF have a conflicting relationship, we developed the coated GPF that can achieve both the low initial pressure drop and high purification performance.
Technical Paper

Assessment of Different Included Spray Cone Angles and Injection Strategies for PCCI Diesel Engine Combustion

2017-03-28
2017-01-0717
For compliance with legislative regulations as well as restricted resources of fossil fuel, it is essential to further reduce engine-out emissions and increase engine efficiency. As a result of lower peak temperatures and increased homogeneity, premixed Low-Temperature Combustion (LTC) has the potential to simultaneously reduce nitrogen oxides (BSNOx) and soot. However, LTC can lead to higher emissions of unburnt total hydrocarbons (BSTHC) and carbon monoxide (BSCO). Furthermore, losses in efficiency are often observed, due to early combustion phasing (CA50) before top dead center (bTDC). Various studies have shown possibilities to counteract these drawbacks, such as split-injection strategies or different nozzle geometries. In this work, the combination of both is investigated. Three different nozzle geometries with included spray angles of 100°, 120°, and 148° and four injection strategies are applied to investigate the engine performance.
Journal Article

Assessment of the Full Thermodynamic Potential of C8-Oxygenates for Clean Diesel Combustion

2017-09-04
2017-24-0118
Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” (TMFB) at the RWTH Aachen University, two novel biogenic fuels, namely 1-octanol and its isomer dibutyl ether (DBE), were identified and extensively analyzed in respect of their suitability for combustion in a Diesel engine. Both biofuels feature very different properties, especially regarding their ignitability. In previous works of the research cluster, promising synthesis routes with excellent yields for both fuels were found, using lignocellulosic biomass as source material. Both fuels were investigated as pure components in optical and thermodynamic single cylinder engines (SCE). For 1-octanol at lower part load, almost no soot emission could be measured, while with DBE the soot emissions were only about a quarter of that with conventional Diesel fuel. At high part load (2400 min-1, 14.8 bar IMEP), the soot reduction of 1-octanol was more than 50% and for DBE more than 80 % respectively.
Technical Paper

Cam-phasing Optimization Using Artificial Neural Networks as Surrogate Models-Fuel Consumption and NOx Emissions

2006-04-03
2006-01-1512
Cam-phasing is increasingly considered as a feasible Variable Valve Timing (VVT) technology for production engines. Additional independent control variables in a dual-independent VVT engine increase the complexity of the system, and achieving its full benefit depends critically on devising an optimum control strategy. A traditional approach relying on hardware experiments to generate set-point maps for all independent control variables leads to an exponential increase in the number of required tests and prohibitive cost. Instead, this work formulates the task of defining actuator set-points as an optimization problem. In our previous study, an optimization framework was developed and demonstrated with the objective of maximizing torque at full load. This study extends the technique and uses the optimization framework to minimize fuel consumption of a VVT engine at part load.
Technical Paper

Design of High Performance Coated GPF with 2D/3D Structure Analysis

2019-04-02
2019-01-0977
In recent years along with stringent the regulations, vehicles equipped with gasoline particulate filter (GPF) have started to launch. Compared to bare GPF, coated GPF (cGPF) requires not only PN filtration efficiency, low pressure drop, but also purification performance. In the wall flow type cGPF having a complicated the pore shape, the pore structure further irregularly changes depending on the coated state of the catalyst, so it is difficult to understand the matter of in-wall. In order to advance of cGPF function, it was researched that revealing the relevance between pore structure change in the wall and GPF function. Therefore, to understand the catalyst coated state difference, cGPF of several coating methods were prepared, and their properties were evaluated by various analyses, and performance was tested.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Technical Paper

Development of Aluminum Powder Metal Composite Material Suitable for Extrusion Process used for Cylinder Sleeves of Internal Combustion Engines

2014-04-01
2014-01-1002
There are a couple of ways to manufacture aluminum cylinder blocks that have a good balance between productivity and abrasion resistance. One of them is the insert-molding of a sleeve made of PMC (Powder Metal Composite) by the HPDC (High Pressure Die Casting) method. However, in this method, cracks are apt to occur on the surface when the PMC sleeve is extruded and that has been a restriction factor against higher extrusion speed. The authors attempted to raise this extrusion temperature by eliminating the Cu additive process from the aluminum alloy powder in order to raise its melting point by approximately 50 °C. This enabled the wall of the extruded sleeve to be thinner and the extrusion speed to be higher compared to those of a conventional production method while avoiding the occurrence of surface cracks.
X