Refine Your Search

Topic

Author

Search Results

Technical Paper

32 Development of Silent Chain Drive System for Motorcycles

2002-10-29
2002-32-1801
Examining the noise reduction of a motorcycle, the requirement of an effective method of reducing a drive chain noise has been a pending issue similarly to noise originating from an engine or exhaust system, etc. Through this study, it became clear that the mechanism of chain noise could be classified into two; low frequency noise originated from cordal action according to the degree of chain engagement and high frequency noise generated by impact when a chain roller hits sprocket bottom. An improvement of urethane resin damper shape, mounted on a drive side sprocket, was effective for noise reduction of the former while our development of a chain drive that combined an additional urethane resin roller with an iron roller worked well for the latter. The new chain system that combined this new idea has been proven to be capable of reducing the chain noise to half compared with a conventional system.
Technical Paper

47 Development of a Titanium Material by Utilizing Off-Grade Titanium Sponge

2002-10-29
2002-32-1816
Titanium alloy for forging and pure titanium material for exhaust systems have been developed. The forging alloy will be applied to production of lightweight motorcycle frames and the pure titanium will be applied to improve engine performance. The materials have been made inexpensive by the use of off-grade sponge that includes many impurities for production of titanium ingot. Stable characteristics have been obtained by controlling oxygen equivalent after setting the volume of tolerable impurities by considering mechanical properties and production engineering. In spite of low-cost, the material provides the same design strength compared to conventional material, and enables parts production with existing equipment. A review of manufacturing and surface treatment processes indicated a reduction in the price of titanium parts produced with this new material.
Technical Paper

49 Development of Pb-free Free-Cutting Steel Enabling Omission of Normalizing for Crankshafts

2002-10-29
2002-32-1818
Crankshafts of motorcycles require high strength, high reliability and low manufacturing cost. Recently, a reduction of Pb content in the free-cutting steel, which is harmful substance, is required. In order to satisfy such requirements, we started the development of Pb-free free-cutting steel which simultaneously enabled the omission of the normalizing process. For the omission of normalizing process, we adjusted the content of Carbon, Manganese and Nitrogen of the steel. This developed steel can obtain adequate hardness and fine microstructure by air-cooling after forging. Pb-free free-cutting steel was developed based on Calcium-sulfur free-cutting steel. Pb free-cutting steel is excellent in cutting chips frangibility in lathe process. We thought that it was necessary that cutting chips frangibility of developed steel was equal to Pb free-cutting steel. It was found that cutting chips frangibility depend on a non-metallic inclusion's composition, shape and dispersion.
Technical Paper

52 Development of a Four-stroke Engine with Turbo Charger for Personal Watercraft

2002-10-29
2002-32-1821
There is a movement to apply emission control in a marine engine as well due to high public awareness of environmental concern in the United States. We started at the development of 3-seater Personal Watercraft (PWC) equipped with 4-stroke engines in taking environment conformity and potential into account. The PWC employed series 4-cylinder 1100cc displacement engine that has been used for mass production motorcycles. The engine was modified to satisfy requirements for PWC, as a marine engine, such as performance function and corrosion. In order to achieve greater or equal power/weight ratio as against two-stroke PWCs, a four-stroke engine for PWC with an exhaust turbo charger was developed. As a result, we succeeded in developing an engine that attained top-level running performance and durability superior to competitors' 2-stroke engines.
Technical Paper

69 Development of Gear Train Behavioral Analysis Technologies Considering Non-linear Elements

2002-10-29
2002-32-1838
A numerical calculation method, which enables the analysis of gear train behavior including non-linear elements in a motorcycle engine, was established. During the modeling process, it was confirmed that factors such as bearing distortion, radial bearing clearance and elastic deformation of a tooth flank could not be neglected because they effect the rotation behavior. To keep a high accuracy, those factors were included in the simulation model, after they were converted into the rigidity elements along the rotational direction of each gear model. In addition, the model was combined with a crankshaft behavior calculation model for a driving and excitation source. A time domain numerical integration method was used to perform the transient response simulation across a wide range of engine speeds. A jump phenomenon of response behavior of the driven gear was predicted that is a characteristic of non-linear response. The phenomenon was also observed in a physical test.
Technical Paper

A Comparative Evaluation of Pedestrian Kinematics and Injury Prediction for Adults and Children upon Impact with a Passenger Car

2004-03-08
2004-01-1606
Studies show that the pedestrian population at high risk of injury consists of both young children and adults. The goal of this study is to gain understanding in the mechanisms that lead to injuries for children and adults. Multi-body pedestrian human models of two specific anthropometries, a 6year-old child and a 50th percentile adult male, are applied. A vehicle model is developed that consists of a detailed rigid finite element mesh, validated stiffness regions, stiff structures underlying the hood and a suspension model. Simulations are performed in a test matrix where anthropometry, impact speed and impact location are variables. Bumper impact occurs with the tibia of the 50th percentile adult male and with the thigh of the 6-year-old child. The head of a 50th percentile male impacts the lower windshield, while the 6-year-old child's head impacts the front part of the hood.
Technical Paper

A Computer Simulation for Motorcycle Rider–Motion in Collision

2003-09-15
2003-32-0044
A computer simulation method for motorcycle rider motion in a collision on a passenger car has been developed. The computer simulation results were in two cases of collision, at 45 degree and 90 degree angles against the side of a passenger car. The simulated results were compared to the test results for validation. The simulation software of explicit finite element method (FEM) has been used, because of its capability for expressing accurate shape and deformation. The mesh size was determined with consideration for simulation accuracy and calculation time, and an FEM model of a motorcycle, an airbag, a dummy, a helmet and a passenger car were built. To shorten the calculation time, a part of the model was regarded as a rigid body and eliminated from the contact areas. As a result, highly accurate dummy posture and head velocity at the time of contact on the ground were simulated in the two cases of collision.
Technical Paper

A Minimum-Effort Motion Algorithm for Digital Human Models

2003-06-17
2003-01-2228
A new realistic motion control algorithm for digital human models is presented in this paper based on the principle of effort minimization. The proposed algorithm is developed through an innovative mathematical model to make the applications more flexible and more global, especially for the visualization of human motions in automotive assembly operations. The central idea of this unique model is to interpret the solution of the homogeneous Lagrange equation for a mannequin as the origin of dynamic motion. Furthermore, a digital human possesses about 42 joints over the main body except the head, fingers and toes, and offers a large room of kinematic redundancy. We have found 14 new 3-D independent motion markers assigned over the human body to constitute a Cartesian coordinate system, under which a minimum-effort based dynamic control scheme is developed using a state-feedback linearization procedure.
Technical Paper

A Multi-Body Computational Study of the Kinematic and Injury Response of a Pedestrian with Variable Stance upon Impact with a Vehicle

2004-03-08
2004-01-1607
This research investigates the variation of pedestrian stance in pedestrian-automobile impact using a validated multi-body vehicle and human model. Detailed vehicle models of a small family car and a sport utility vehicle (SUV) are developed and validated for impact with a 50th percentile human male anthropometric ellipsoid model, and different pedestrian stances (struck limb forward, feet together, and struck limb backward) are investigated. The models calculate the physical trajectory of the multi-body models including head and torso accelerations, as well as pelvic force loads. This study shows that lower limb orientation during a pedestrian-automobile impact plays a dominant role in upper body kinematics of the pedestrian. Specifically, stance has a substantial effect on the subsequent impacts of the head and thorax with the vehicle. The variation in stance can change the severity of an injury incurred during an impact by changing the impact region.
Technical Paper

A New Concept for Occupant Deceleration Control during Vehicle Crashes -Study of the Vehicle Mass Separation Model

2003-10-27
2003-01-2761
In order to minimize occupant injury in a vehicle collision, an approach was attempted to address this issue by optimizing the waveform of the vehicle body deceleration to reduce the maximum deceleration applied to the occupant. A previous study has shown that the mathematical solution to the optimal vehicle deceleration waveform comprised three stages: high deceleration, negative deceleration, and constant deceleration. A kinematic model with separated mass of the vehicle was devised to generate the optimal vehicle deceleration waveform comprising three stages including a one with negative deceleration in the middle. The validity of this model has been confirmed by a mathematical study on a one-dimensional lumped mass model. The optimal vehicle deceleration waveform generated by this method was then validated by a three-dimensional dummy simulation.
Technical Paper

A New Concept for Occupant Deceleration Control in a Crash - Part 2

2003-03-03
2003-01-1228
In order to minimize occupant injury in a vehicle crash, an approach was attempted to address this issue by making the wave form of vehicle body deceleration optimal to lower the maximum value of the occupant deceleration. Prior study shows that the mathematical solutions for the optimal vehicle deceleration wave form feature consisting of three aspects: high deceleration, negative deceleration, and constant deceleration. A kinematical model which has separated mass of the vehicle was devised to generate an optimal vehicle deceleration wave form which consists of three segments including a segment of negative deceleration in the middle. The validity of this model has been certified by a mathematical study by using a one-dimensional lumped mass model. The effectiveness of the optimal vehicle deceleration wave form generated by this method was validated by a simulation with a three-dimensional dummy.
Technical Paper

A New Way of Electrical/Electronic Systems Endurance Testing of Vehicles in a Real World Environment Prior to Production Launch

2001-03-05
2001-01-1101
With the increasing emphasis on Systems Engineering, there is a need to ensure that Electrical/Electronic (E/E) Systems Endurance Testing of vehicles, in a real world environment, prior to Production Launch, is performed in a manner and at a technological level that is commensurate with the high level of electronics and computers in contemporary vehicles. Additionally, validating the design and performance of individual standalone electronic systems and modules “on the bench” does not guarantee that all the permutations and combinations of real-world hardware, software, and driving conditions are taken into account. Traditional Proving Ground (PG) vehicle testing focuses mainly on powertrain durability testing, with only a simple checklist being used by the PG drivers as a reminder to cycle some of the electrical components such as the power window switches, turn signals, etc.
Technical Paper

A System for the Modal Analysis of Exhaust Emissions from Motorcycles

1981-02-01
810297
Devices for use in control of exhaust emissions have become indispensable to motorcycles. In order to evaluate quantitatively the effect of each device, the modal analysis system has to be required. The Modal Analysis System is one that classifies any driving schedule which is used for emissions measurement into four modes: idle, acceleration, cruise, and deceleration; then measures the emissions continuously using a mini-computer which accumulates the results of the analysis by mode. Instead of CO2 tracer method, we introduced the method of diluted exhaust gas measurement. In order for the system to produce reliable measurements, the accuracy of the total installation must be ensured. This paper describes the improvements of accuracy of analysers, technique on handling delay time and the verifications on the modal analysis system.
Technical Paper

A new concept for occupant deceleration control in a crash

2000-06-12
2000-05-0209
In order to minimize occupant injury in a vehicle crash, an approach was attempted to address this issue by making the wave form of vehicle body deceleration (deceleration curve) optimal to lower the maximum deceleration value applied to the occupant. A study with a one-dimensional, two-mass model was conducted to the kinetic mechanism between the body deceleration curve and the responding occupant''s motion while finding a mathematical solution for the optimal body deceleration curve. A common feature of the derived mathematical solutions is that they consist of three aspects: high deceleration, low or negative deceleration, and constant deceleration. This was demonstrated by simulation with a three-dimensional dummy. The results show that the response of the dummy closely agrees with that of the one-dimensional, two-mass model, thus proving the adequacy of the mathematical solution, and that occupant injury was reduced.
Technical Paper

Advanced Hydro-Mechanical Transmission with High-Durability for Small Utility Vehicles

2001-03-05
2001-01-0876
The new automatic transmission, A-HMT (Advanced Hydro-Mechanical Transmission) has been developed for the Honda ATV (All Terrain Vehicle), which is for wide applications such as utility, recreation, etc. The A-HMT system features high performance, durability and reliability attained by improving the structures from the original hydro-mechanical automatic transmission used for the scooter called “Juno”, which Honda had produced many years ago, working on the same principle. In addition to it, by applying the electronic control system, the highly responsive driveability that suits the requirements of ATV's has been realized. The A-HMT is installed in the new 500 cm3 ATV, FOURTRAX FOREMAN RUBICON, which has been introduced in the USA market since June 2000.
Technical Paper

Air Bag Loading on In-Position Hybrid III Dummy Neck

2001-03-05
2001-01-0179
The Hybrid III family of dummies is used to estimate the response of an occupant during a crash. One recent area of interest is the response of the neck during air bag loading. The biomechanical response of the Hybrid III dummy's neck was based on inertial loading during crash events, when the dummy is restrained by a seat belt and/or seat back. Contact loading resulting from an air bag was not considered when the Hybrid III dummy was designed. This paper considers the effect of air bag loading on the 5th percentile female Hybrid III dummies. The response of the neck is presented in comparison to currently accepted biomechanical corridors. The Hybrid III dummy neck was designed with primary emphasis on appropriate flexion and extension responses using the corridors proposed by Mertz and Patrick. They formulated the mechanical performance requirements of the neck as the relationship between the moment at the occipital condyles and the rotation of the head relative to the torso.
Technical Paper

Analysis of Factors Influencing Side Impact Compatibility

2009-04-20
2009-01-1430
To examine factors influencing side impact compatibility, as a first step, car-to-car tests were conducted to investigate the effect of sill interaction. As a result, it was found that sill interaction had a less significant effect on side impact performance than reducing the load aligned with the dummy. In addition, a series of Mobile Deformable Barrier (MDB) tests were performed to corroborate the conclusions of the car-to-car tests. Comparison of the results of these MDB tests showed that the effect of reducing loading aligned with the driver dummy is more significant than that of engagement with the target car's sill, which is consistent with the car-to-car test results.
Technical Paper

Analysis of the Contribution of Body Flexibility to the Handling and Ride Comfort Performance of Passenger Cars

2010-04-12
2010-01-0946
Full vehicle multibody models are commonly used to improve the handling and ride comfort performance of passenger cars. When focusing on body, it is difficult to validate the simulation results as the forces at the body/suspension interface cannot be measured. Moreover, body results cannot be easily correlated to the handling perception because it is by nature subjective. In this paper, we present a new methodology based on experimental data to analyze the contribution of the body flexibility to the handling performance of a passenger car. This method, using operational measurements and body measurements, allows in a first step to identify the body forces and in a second step, to analyze the contribution of the body modes during handling maneuvers. The same process can be applied for ride comfort.
Technical Paper

Analysis of upper extremity response under side air bag loading

2001-06-04
2001-06-0016
Computer simulations, dummy experiments with a new enhanced upper extremity, and small female cadaver experiments were used to analyze the small female upper extremity response under side air bag loading. After establishing the initial position, three tests were performed with the 5th percentile female hybrid III dummy, and six experiments with small female cadaver subjects. A new 5th percentile female enhanced upper extremity was developed for the dummy experiments that included a two-axis wrist load cell in addition to the existing six-axis load cells in both the forearm and humerus. Forearm pronation was also included in the new dummy upper extremity to increase the biofidelity of the interaction with the handgrip. Instrumentation for both the cadaver and dummy tests included accelerometers and magnetohydrodynamic angular rate sensors on the forearm, humerus, upper and lower spine.
Journal Article

Application of Engine Load Estimation Method Using Crank Angular Velocity Variation to Spark Advance Control

2014-11-11
2014-32-0065
The technology to estimate engine load using the amplitude of crankshaft angular velocity variation during a cycle, which is referred to as “Δω (delta omega)”, in a four-stroke single-cylinder gasoline engine has been established in our former studies. This study was aimed to apply this technology to the spark advance control system for small motorcycles. The cyclic variation of the Δω signal, which affects engine load detection accuracy, was a crucial issue when developing the system. To solve this issue, filtering functions that can cope with various running conditions were incorporated into the computation process that estimates engine loads from Δω signals. In addition, the system made it possible to classify engine load into two levels without a throttle sensor currently used. We have thus successfully developed the new spark advance system that is controlled in accordance with the engine speed and load.
X