Refine Your Search

Topic

Author

Search Results

Technical Paper

32 Development of Silent Chain Drive System for Motorcycles

2002-10-29
2002-32-1801
Examining the noise reduction of a motorcycle, the requirement of an effective method of reducing a drive chain noise has been a pending issue similarly to noise originating from an engine or exhaust system, etc. Through this study, it became clear that the mechanism of chain noise could be classified into two; low frequency noise originated from cordal action according to the degree of chain engagement and high frequency noise generated by impact when a chain roller hits sprocket bottom. An improvement of urethane resin damper shape, mounted on a drive side sprocket, was effective for noise reduction of the former while our development of a chain drive that combined an additional urethane resin roller with an iron roller worked well for the latter. The new chain system that combined this new idea has been proven to be capable of reducing the chain noise to half compared with a conventional system.
Technical Paper

A Hybrid Method for Vehicle Axle Noise Simulation with Experimental Validation

2003-05-05
2003-01-1707
Recently, many authors have attempted to represent an automobile body in terms of experimentally derived frequency response functions (FRFs), and to couple the FRFs with a FEA model of chassis for performing a total system dynamic analysis. This method is called Hybrid FEA-Experimental FRF method, or briefly HYFEX. However, in cases where the chassis model does not include the bushing models, one can not directly connect the FRFs of the auto body to the chassis model for performing a total system dynamic analysis. In other cases when the chassis model includes the bushings, the bushing dynamic rates are modeled as constant stiffness rather than frequency dependent stiffness, the direct use of the HYFEX method will yield unsatisfactory results. This paper describes how the FRF's of the auto body and the frequency dependent stiffness data of the bushings can be combined with an appropriate mathematical formulation to better represent the dynamic characteristics of a full vehicle.
Technical Paper

AWD Driveline Isolation In SUV Vehicle

2005-05-16
2005-01-2287
The popularity of AWD passenger vehicles presents a challenge to provide car-like drive-train NVH within a relatively small package space. This paper describes a drive-train NVH case study in which analysis and test were used, in conjunction, to solve an NVH problem. Also, it details a systematic process of using the analytical model to identify and resolve similar problems. The particular problem for this case study is a noise and vibration issue occurring at 75 MPH primarily in the middle seat of an all-wheel drive vehicle. Tests indicated that it may be due to propeller shaft imbalance. Analysis results showed good correlation with the tests for that loading condition. Several solutions were identified, which were confirmed by both test and analysis. The most cost-effective of these solutions was implemented.
Technical Paper

Analysis of CVT Element Vibration by In-Situ Measurement

2020-04-14
2020-01-0906
When the belt contacts a pulley in a pushing belt-type CVT, vibration is generated by frictional force due to rubbing between the individual elements that are components of the belt, which is said to increase wear and noise. The authors speculated that the source of that vibration is misalignment of the secondary pulley and primary pulley V-surfaces. To verify that phenomenon, a newly developed micro data logger was attached to an element of a mass-produced metal pushing V-belt CVT and the acceleration was measured at rotations equal to those at drive (1000 to 2500 r/m). In addition, the results of calculations using a behavior analysis model showed that changes in pulley misalignment influence element vibration, and that the magnitude of the vibration is correlated to the change in the metal pushing V-belt alignment immediately before the element contacts the pulley.
Technical Paper

Computer simulation process for pedestrian protection structures

2000-06-12
2000-05-0222
Research into pedestrian protection has been carried out since the 1960s, in recent years there have been proposals in Europe to legislate requirements in this area and therefore the research is becoming more focused. In the draft regulation, impactor tests have been proposed as a method for evaluating the impact caused by vehicles'' body for pedestrians. This paper introduces impactor model and actual vehicle analysis as a means for simulating impactor testing. Three types of impactors for vehicle tests are presented. It is necessary that the models are first matched with the results of the calibration tests, then matched with the results of the tests on actual vehicles.
Technical Paper

Deployment of Vehicle-to-Grid Technology and Related Issues

2015-04-14
2015-01-0306
In order to reduce emissions and enhance energy security, renewable power sources are being introduced proactively. As the fraction of these sources on a power grid grows, it will become more difficult to maintain balance between renewable power supply and coincident demand, because renewable power generation changes frequently and significantly, depending on weather conditions. As a means of resolving this imbalance between supply and demand, vehicle-to-grid (V2G) technology is being discussed, because it enables vehicles to contribute to stabilizing the power grid by utilizing on-board batteries as a distributed energy resource as well as an energy storage for propulsion. The authors have built a plug-in vehicle with a capability of backfeeding to the power grid, by integrating a bi-directional on-board AC/DC and DC/AC converter (on-board charger) and a digital communication device into the vehicle. The vehicle is interconnected to a power regulation market in the United States.
Technical Paper

Development Procedure for Interior Noise Performance by Virtual Vehicle Refinement, Combining Experimental and Numerical Component Models

2001-04-30
2001-01-1538
This paper summarizes the development of a predictive vibro-acoustic full vehicle model of a mid-size sedan and focuses on the engineering analysis procedures used to evaluate the design performance related to engine induced noise and vibration. The vehicle model is build up from a mixture of test-based and finite element component models. FRF Based Substructuring is used for their assembly. The virtual car model is loaded by engine forces resulting from indirect force identification. This force-set includes combustion, inertia, piston slap and crank bearing forces, for engine harmonics from 0.5 to 10th order. Such forced response analysis yields vibration levels at every component, at every interface between components, and interior noise predictions. The target is to provide the vehicle NVH manager with the insight required to identify major causes for peak noise levels and to set targets and develop an action plan for every component design team.
Technical Paper

Development of Active Noise Control System Optimized for Road Noise Reduction

2023-05-08
2023-01-1040
In this paper, a newly developed Active Noise Control (ANC) system is introduced, that effectively reduces road noise, which becomes a major issue with electrified vehicles, and that enhances vehicle interior sound levels matching seamless acceleration by electric drive. Conventionally, reducing road noise using ANC requires numerous sensors and speakers, as well as a processor with high computing power. Therefore, the increase in system cost and the complexity of the system are obstacles to its spread. To overcome these issues, this system is developed based on four concepts. The first is a modular system configuration with unified interface to apply to various vehicle types and grades. The second is the integration and optimal placement of noise source reference sensors to achieve both reduction in number of parts and noise reduction performance.
Journal Article

Development of Feedback-Based Active Road Noise Control Technology for Noise in Multiple Narrow-Frequency Bands and Integration with Booming Noise Active Noise Control System

2015-04-14
2015-01-0660
When a vehicle is in motion, noise is generated in the cabin that is composed of noise in multiple narrow-frequency bands and caused by input from the road surface. This type of noise is termed low-frequency-band road noise, and its reduction is sought in order to increase occupant comfort. The research discussed in this paper used feedback control technology as the basis for the development of an active noise control technology able to simultaneously reduce noise in multiple narrow-frequency bands. Methods of connecting multiple single-frequency adaptive notch filters, a type of adaptive filter, were investigated. Based on the results, a method of connecting multiple filters that would mitigate mutual interference caused by different controller transmission characteristics was proposed.
Technical Paper

Development of Low Noise Portable Generator for Home Use

1989-09-01
891802
The application of inverter technology has enabled the realization of a lightweight, portable power generator. It produces an 80% duty, square wave alternating current (AC). Protective features are incorporated to safeguard internal transistors and other electrical components, as well as various pieces of electrical equipmemt utilizing the power it produces.
Technical Paper

Development of a Lightweight and Compact 1kVA-Class Portable Generator

1999-09-28
1999-01-3304
The development of the lightweight and compact EU1000i generator with a maximum output of 1kVA is presented. The technology applied to achieve the required levels of exhaust emission, fuel consumption and noise, and to provide a stable electrical power supply with low waveform distortion is described. The technology comprises of four elements: a high-speed, multi-pole, external rotor type alternator, a microcomputer-controlled sine wave inverter, a compact high-speed 4-stroke engine with electronic speed governing, and a lightweight frame with a two-level noise-damping system. Combination of these four elements of technology has achieved 50% less weight, 25-30% lower fuel consumption, and 7-9dB(A) less noise than the previous model. The emission levels of CO and of NOx + HC are also 30% and 65% lower than the 2000 CARB regulations.
Technical Paper

Engine Cooling Fan Noise and Vibration Problem Caused by a Switching Power Supply

2003-05-05
2003-01-1672
A 50 Hz Solid-State Relay (SSR) was used to provide pulse-width-modulated power to engine cooling fans for continuous speed control, to reduce airflow noise and improve efficiency. However, this caused the cooling fans to vibrate at the switching frequency and harmonics, thus degrading vehicle NVH performance. This paper describes the problem associated with SSR- powered cooling fans, including root-cause analysis, and identification of areas sensitive to vibration affected by the switching power supply. Based on our analysis, we found several solutions to the problem. Our production solution and some generic recommendations for shroud design are presented in the paper.
Journal Article

Establishment of Performance Design Process for Vehicle Sound-Roof Packages Based on SEA Method

2015-04-14
2015-01-0664
The process for setting the marketability targets and achievement methods for automotive interior quietness (as related to air borne noise above 400Hz, considered the high frequency range) was established. With conventional methods it is difficult to disseminate the relationship between the performance of individual parts and the overall vehicle performance. Without new methods, it is difficult to propose detailed specifications for the optimal sound proof packages. In order to make it possible to resolve the individual components performance targets, the interior cavity was divided into a number of sections and the acoustic performance of each section is evaluated separately. This is accomplished by evaluating the acoustical energy level of each separate interior panel with the unit power of the exterior speaker excitation. The applicability of the method was verified by evaluating result against predicted value, using the new method, during actual vehicle operation.
Technical Paper

Experimental and Analytical Investigation of Countermeasure against Squeal in Floating Type of Car Disc Brake

2011-05-17
2011-01-1579
This paper deals with low-frequency squeal phenomena generated in floating type of car disc brake units. First, the vibration characteristics of low-frequency squeal (about 2 kHz) were investigated. Here, in order to reproduce the squeal, a bench-test apparatus consisting of an actual automotive disc brake unit was utilized, itself comprising a disc, pad, and caliper. With this, the associated frequency characteristics were experimentally determined. It was found that the squeal is caused by coupled out-of-plane vibration modes among the disc and caliper due to Coulomb friction. As an experimental countermeasure, a dynamic absorber was applied to the leading side or the trailing side of the inner caliper. It was found that squeal can be suppressed when the natural frequency of the dynamic absorber is tuned so as to be near the frequency of the squeal, and that squeal can be suppressed even without viscous damping of the dynamic absorber.
Technical Paper

High Porosity Substrates for Fast-Light-Off Applications

2015-04-14
2015-01-1009
Regulations that limit emissions of pollutants from gasoline-powered cars and trucks continue to tighten. More than 75% of emissions through an FTP-75 regulatory test are released in the first few seconds after cold-start. A factor that controls the time to catalytic light-off is the heat capacity of the catalytic converter substrate. Historically, substrates with thinner walls and lower heat capacity have been developed to improve cold-start performance. Another approach is to increase porosity of the substrate. A new material and process technology has been developed to significantly raise the porosity of thin wall substrates (2-3 mil) from 27-35% to 55% while maintaining strength. The heat capacity of the material is 30-38% lower than existing substrates. The reduction in substrate heat capacity enables faster thermal response and lower tailpipe emissions. The reliance on costly precious metals in the washcoat is demonstrated to be lessened.
Technical Paper

Honda New In-Line Five Cylinder Engine-Noise and Vibration Reduction

1990-02-01
900389
Extensive studies in various technological fields have been conducted to determine the most appropriate engine configuration (arrangement and number of cylinders) for Honda's next-generation compact luxury automobiles. One of the basic concepts incorporated into these models include an ‘exhilarating drive’. Studies in the noise/vibration field disclosed that noise/vibration levels must be reduced while simultaneously realizing linearity in noise/vibration increase. As a result, an in-line five cylinder engine was chosen for this purpose. Additionally, Honda designed a new five-point engine mount system for a longitudinally-mounted engine in its FWD layout. Crankshaft rumbling noise in the in-line five cylinder engine was proven to be caused by crankshaft torsional resonance, as found in previous research of in-line four and six cylinder engines. This noise deteriorates linearity sensation.
Technical Paper

Improving Low Frequency Torsional Vibrations NVH Performance through Analysis and Test

2007-05-15
2007-01-2242
Low frequency torsional vibrations can be a significant source of objectionable vehicle vibrations and in-vehicle boom, especially with changes in engine operation required for improved fuel economy. These changes include lower torque converter lock-up speeds and cylinder deactivation. This paper has two objectives: 1) Examine the effect of increased torsional vibrations on vehicle NVH performance and ways to improve this performance early in the program using test and simulation techniques. The important design parameters affecting vehicle NVH performance will be identified, and the trade-offs required to produce an optimized design will be examined. Also, the relationship between torsional vibrations and mount excursions, will be examined. 2) Investigate the ability of simulation techniques to predict and improve torsional vibration NVH performance. Evaluate the accuracy of the analytical models by comparison to test results.
Technical Paper

Laminar Flow Whistle on a Vehicle Side Mirror

2007-04-16
2007-01-1549
In the development of several outside mirror designs for vehicles, a high frequency noise (whistling) phenomenon was experienced. First impression was that this might be due to another source on the vehicle (such as water management channels) or a cavity noise; however, upon further investigation the source was found to be the mirror housing. This “laminar whistle” is related to the separation of a laminar boundary layer near the trailing edges of the mirror housing. When there is a free stream impingement on the mirror housing, the boundary layer starts out as laminar, but as the boundary layer travels from the impingement point, distance, speed, and roughness combine to trigger the transition turbulent. However, when the transition is not complete, pressure fluctuations can cause rapidly changing flow patterns that sound like a whistle to the observer. Because the laminar boundary layer has very little energy, it does not allow the flow to stay attached on curved surfaces.
Journal Article

Method Using Multiple Regression Analysis to Separate Engine Radiation Noise into the Contributions of Combustion Noise and Mechanical Noise in the Time Domain

2014-04-01
2014-01-1678
A technique was created to separate the contributions of combustion noise and mechanical noise to engine noise in the time domain in order to achieve efficient measures for enhancing the sound quality of combustion noise. There is an existing technique based on 1/3 octave band analysis that is known as a method for separating the contributions to engine radiation noise, but this technique cannot provide time-domain data. Therefore, the author has proposed a technique that separates engine radiation noise into combustion noise and mechanical noise in the time domain by finding the combustion noise for each cylinder and calculating its structural response function by considering its real and imaginary components. Results of analysis of actual engine radiation noise with this technique confirmed that combustion noise, which is characterized by strong pulsation, and irregular mechanical noise can be separated in the time domain with good precision.
Technical Paper

NVH Refinement of Diesel Powered Sedans with Special Emphasis on Diesel Clatter Noise and Powertrain Harshness

2007-05-15
2007-01-2378
NVH refinement of passenger vehicles is crucial to customer acceptance of contemporary vehicles. This paper describes the vehicle NVH development process, with specific examples from a Diesel sedan application that was derived from gasoline engine-based vehicle architecture. Using an early prototype Diesel vehicle as a starting point, this paper examines the application of a Vehicle Interior Noise Simulation (VINS) technique in the development process. Accordingly, structureborne and airborne noise shares are analyzed in the time-domain under both steady-state and transient test conditions. The results are used to drive countermeasure development to address structureborne and airborne noise refinement. Examples are provided to highlight the refinement process for “Diesel knocking” under idle as well as transient test conditions. Specifically, the application of VINS to understanding the influence of high frequency dynamic stiffness of hydro-mounts on Diesel clatter noise is examined.
X