Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1-D Simulation Model Developed for a General Purpose Engine

2016-11-08
2016-32-0030
In recent years, improvements in the fuel economy and exhaust emission performance of internal combustion engines have been increasingly required by regulatory agencies. One of the salient concerns regarding general purpose engines is the larger amount of CO emissions with which they are associated, compared with CO emissions from automobile engines. To reduce CO and other exhaust emissions while maintaining high fuel efficiency, the optimization of total engine system, including various design parameters, is essential. In the engine system optimization process, cycle simulation using 0-D and 1-D engine models are highly useful. To define an optimum design, the model used for the cycle simulation must be capable of predicting the effects of various parameters on the engine performance. In this study, a model for predicting the performance of a general purpose SI (Spark Ignited) engine is developed based on the commercially available engine simulation software, GT-POWER.
Technical Paper

248mm Elliptical Torque Converter from DaimlerChrysler Corporation

2007-04-16
2007-01-0241
The need for efficient space utilization has provided a framework for the design of a 248mm family of torque converters that supports a wide choice of engine and transmission combinations. The axial length of the part and its weight have been substantially reduced while the performance range has been broadened without degradation of efficiency. The new converter operates in an expanded slipping clutch mode. It significantly contributes to the performance and fuel economy improvements of related vehicles. To meet the cost target, the comprehensive lineup and the resulting complexity have required a high level of component interchangeability. During the design phase, the manufacturing core competencies were scrutinized and process redundancies eliminated, both resulting in optimization of material selection and applicable technology.
Technical Paper

32 Development of Silent Chain Drive System for Motorcycles

2002-10-29
2002-32-1801
Examining the noise reduction of a motorcycle, the requirement of an effective method of reducing a drive chain noise has been a pending issue similarly to noise originating from an engine or exhaust system, etc. Through this study, it became clear that the mechanism of chain noise could be classified into two; low frequency noise originated from cordal action according to the degree of chain engagement and high frequency noise generated by impact when a chain roller hits sprocket bottom. An improvement of urethane resin damper shape, mounted on a drive side sprocket, was effective for noise reduction of the former while our development of a chain drive that combined an additional urethane resin roller with an iron roller worked well for the latter. The new chain system that combined this new idea has been proven to be capable of reducing the chain noise to half compared with a conventional system.
Technical Paper

49 Development of Pb-free Free-Cutting Steel Enabling Omission of Normalizing for Crankshafts

2002-10-29
2002-32-1818
Crankshafts of motorcycles require high strength, high reliability and low manufacturing cost. Recently, a reduction of Pb content in the free-cutting steel, which is harmful substance, is required. In order to satisfy such requirements, we started the development of Pb-free free-cutting steel which simultaneously enabled the omission of the normalizing process. For the omission of normalizing process, we adjusted the content of Carbon, Manganese and Nitrogen of the steel. This developed steel can obtain adequate hardness and fine microstructure by air-cooling after forging. Pb-free free-cutting steel was developed based on Calcium-sulfur free-cutting steel. Pb free-cutting steel is excellent in cutting chips frangibility in lathe process. We thought that it was necessary that cutting chips frangibility of developed steel was equal to Pb free-cutting steel. It was found that cutting chips frangibility depend on a non-metallic inclusion's composition, shape and dispersion.
Technical Paper

52 Development of a Four-stroke Engine with Turbo Charger for Personal Watercraft

2002-10-29
2002-32-1821
There is a movement to apply emission control in a marine engine as well due to high public awareness of environmental concern in the United States. We started at the development of 3-seater Personal Watercraft (PWC) equipped with 4-stroke engines in taking environment conformity and potential into account. The PWC employed series 4-cylinder 1100cc displacement engine that has been used for mass production motorcycles. The engine was modified to satisfy requirements for PWC, as a marine engine, such as performance function and corrosion. In order to achieve greater or equal power/weight ratio as against two-stroke PWCs, a four-stroke engine for PWC with an exhaust turbo charger was developed. As a result, we succeeded in developing an engine that attained top-level running performance and durability superior to competitors' 2-stroke engines.
Technical Paper

A Failure Criterion for Stretch Bendability of Advanced High Strength Steels

2006-04-03
2006-01-0349
Studies in an Angular Stretch Bend Test (ASBT) have demonstrated that the failure location moves from the side wall to punch nose area. This occurs as the R/T ratio decreases below a certain limit and applies to most low carbon steels with the exception of Dual Phase (DP) steels. Such behavior in DP steels indicates that bending effects have a severe impact on the formability of DP materials. Therefore, the traditional criterion using the forming limit curve (FLC) is not suitable to assess the formability at punch radius areas for DP steels due in part to its uniqueness of unconventional microstructures. In this paper, a new failure criterion, ‘Bending-modified’ FLC (BFLC), is proposed by extending the traditional FLC using the “Stretch Bendability Index” (SBI) concept for the stretch bendability assessment.
Technical Paper

A Fully Variable Mechanical Valvetrain with a Simple Moving Pivot

2005-04-11
2005-01-0770
A continuously variable lift, duration and phase mechanical lift mechanism is described, as applied to the intake valvetrain of a SOHC, 4-valve per cylinder, four-cylinder production engine. Improvements in fuel economy were sought by reduction of pumping losses and improved charge preparation, and optimization of WOT torque was attempted by variation of intake valve closing angle. Adjustment of the mechanism is achieved by movement of the pivot shaft for the rocker arms. The relationship between lift, duration and phase is predetermined at the design stage, and is fixed during operation. There is considerable design flexibility to achieve the envelope of lift curves deemed desirable. The operation of the mechanism is described, as are the development procedure, testing with fixed cams, some cycle simulation, friction testing on a separate rig and dyno testing results for idle, part load and WOT.
Technical Paper

A High Power, Wide Torque Range, Efficient Engine with a Newly Developed Variablea-Valve-Lift and -Timing Mechanism

1989-02-01
890675
A variable valving system was developed. This system has two cam profiles, one for low speed and one for high speed. A 1.2-litre DOHC experimental engine using this system was made and mounted in the body of a 2-1itre class passenger car. Test results of this car were compared to those of the same car with its original engine. The test car showed better results in every area of driving performance, in mode-fuel-econorny and in noise tests. This paper presents the mechanism, operation and test results of this variable valving system, the 1.2-litre experimental engine and this passenger car. THE PERFORMANCE AND EFFICIENCY of the passenger car gasoline engine have been greatly improved: primarily as a response to exhaust-gas emission regulations and the oil crises. These improvements have been achieved mainly through the development of control technologies to optimize many parameters such as ignition timing and air fuel ratio precisely according to driving conditions.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A Simple Approach to Selecting Automotive Body-in-White Primary-Structural Materials

2002-07-09
2002-01-2050
A simple strategy for building lightweight automobile body-in-whites (BIWs) is developed and discussed herein. Because cost is a critical factor, expensive advanced materials, such as carbon fiber composites and magnesium, must only be used where they will be most effective. Constitutive laws for mass savings under various loading conditions indicate that these materials afford greater opportunity for mass saving when used in bending, buckling or torsion than in tensile, shear or compression. Consequently, it is recommended that these advanced materials be used in BIW components subject to bending and torsion such as rails, sills, “A-B-C” pillars, etc. Furthermore, BIW components primarily subject to tension, compression, or shear, such as floor pans, roofs, shock towers, etc., should be made from lower cost steel. Recommendations for future research that are consistent with this strategy are included.
Technical Paper

A Study on Shockless Combustion Change Control of Direct Injection Gasoline Engine

2004-10-25
2004-01-2940
A direct injection gasoline engine featuring a center-injection method that incorporates a high-pressure injector at the top center of the combustion chamber, has been developed. The engine is characterized by a significantly improved fuel economy and emissions performance as the result of the application of direct-injection stratified charge, DISC, which is one of the main features of the direct-injection engine. This paper describes a study on a change control method for switching between DISC and homogeneous charge combustion. The two forms of combustion employed in the new direct-injection engine differ in terms of combustion limits in relation to recirculated exhaust gas and air-fuel ratio. This causes the torque difference which is a specific issue in direct injection gasoline engines. The authors attempted to cope with the issue from the viewpoints of misfire prevention and fuel amount restriction in accordance with the torque required.
Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Journal Article

Advanced Transient Simulation on Hybrid Vehicle Using Rankine Cycle System

2008-04-14
2008-01-0310
A hybrid simulation model in the transient bench was developed to realize the characteristics of the transient behavior and the fuel economy equivalent to that of a real vehicle. The motors and the batteries that were main components of the hybrid vehicle system were simulated as constructive modules, the functions of which have the integrated control and the input/output (I/O) function with real components. This model enabled us to accommodate a variety of auxiliary (AUX) I/O flexibly. The accuracy of the model was verified by the transient characteristics of the engine and the fuel economy result through correlation with a mass-produced vehicle. Furthermore, the flexibility of the model to a variety of AUX I/O was examined from the simulation test of the vehicle equipped with the waste heat recovery (WHR) system.
Technical Paper

An Investigation of a Reduction Method of the Body Vibration at a Situation of Engine Start-Stop

2019-04-02
2019-01-0785
In recent years, electrification of powertrains has been promoted to improve fuel efficiency and CO2 emissions. Along with electrification, it is possible to reduce engine usage frequency and improve the fuel efficiency in traveling. Especially in a hybrid electric vehicle (HEV), the state changes from motor assist mode to engine firing mode. As a result, stay time in eigenvalue of a powertrain is shortened, and vibration of the vehicle body at the engine start situation is able to be reduced as compared with conventional engine-driven vehicle. However, since the HEV is equipped with a high compression ratio engine for improving fuel economy, there is cause for concern that excitation force generated by the powertrain at the time of engine start increases. Also, the vehicle body vibration at engine start situations requires further consideration, because the operation frequency of engine decreases.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Application of Load Path Index U* for Evaluation of Sheet Steel Joint with Spot Welds

2012-04-16
2012-01-0534
An attempt was made to apply the index U* in detail analysis of load paths in structural joints under static load, using as examples coupling structures of two joined frames with hat-shaped sections, and T-beam joint structures each including spot welds, both of which are widely used in automotive body structures. U* is a load path analysis index that expresses the strength of connection between load points and arbitrary points on a structure. It was possible to identify areas making up load paths by means of the magnitude of U* values, and to clarify the areas that should be coupled in order to achieve effective load transfer to contiguous members. In addition, because it is possible to determine whether or not each section of a structure possesses the potential for load transfer using U* analysis, the research also demonstrated that U* could be used as an indicator of joint structures providing efficient load transfer.
Journal Article

Application of Model-Based Development to Engine Restart Vibration After Idling Stop

2017-03-28
2017-01-1053
Idling stop systems are being increasingly adopted in conventional engine vehicles as well as hybrid electric vehicles to increase fuel efficiency. When the engine starts, body vibration occurs that is caused by the rigid body eigenvalues of the power plant during initial combustion. Engine restart vibration after an idling stop is caused by the input force from the transmission, and the reaction force from the drive shaft as well as the input force from the engine. This phenomenon occurs frequently when the engine is restarted from the idling stop, the vibration is increasingly annoying to passengers. Usually, the vehicle development process is carried out in accordance with the V process. The V process divides the vehicle development process into two stages. The first stage is called the vehicle design stage to determine the characteristic. The second stage is called the vehicle verification stage to verify the performance.
Technical Paper

Conceptual Simulation for Plug-In HEV at Early Stage of Development

2015-04-14
2015-01-0980
This study aims to build a conceptual simulation used at the early stage of PHEV development. This simulation enables to design vehicle concept and fundamental architecture with regard to fuel economy, vehicle acceleration and electric range. The model based on forward-looking method comprises of plant-model and controller-model which are made by one-dimensional simulation tool “GT-SUITE” and Matlab/SIMULINK respectively. In order to automatically couple between them and to implement iterative calculations of SOC (State-of-Charge) convergence, optimization and automation tool “modeFRONTIER” was used. As a case study of this simulation, we adopted series-parallel type plug-in hybrid electric vehicle (PHEV) and demonstrated the results on fuel economy of a legislative driving cycle and 0-60mph vehicle acceleration. Moreover, procedures to identify component specifications meeting vehicle targets and requirements at the early stage of vehicle development were concretely described.
Technical Paper

Development of 1600 N/mm2 Class Ultra-High Strength Bolts

2003-03-03
2003-01-1179
1 Many different bolts are employed in automobiles for different purposes and uses, and their strength generally ranges from 700 N/mm2 to 1200 N/mm2. Automobiles face the issue of making improvements in fuel economy as an environmental measure, and there is consequently a requirement to lighten component parts. The creationof higher-strength bolts is an important factor in achieving lighter weight. Increasing the strength, however, can also bring about an increased incidence of delayed fracture, and the conventional solution used to require the application of special steels such as expensive maraging steel. The present development addressed this issue by focusing on high carbon steel rod, which had been considered less susceptible to delayed fracture, although heading was also considered to be difficult. Heading techniques were therefore devised that made it possible not only to form bolts from this material, but also to provide satisfactory strength.
Technical Paper

Development of Aluminium Hollow Subframe Using High-Pressure Die Casting

2016-04-05
2016-01-0406
High-tensile steel plates and lightweight aluminum are being employed as materials in order to achieve weight savings in automotive subframe. Closed-section structures are also in general use today in order to efficiently increase parts stiffness in comparison to open sections. Aluminum hollow-cast subframe have also been brought into practical use. Hollow-cast subframe are manufactured using sand cores in gravity die casting (GDC) or low-pressure die casting (LPDC) processes. Using these manufacturing methods, it is difficult to reduce product thickness, and the limitations of the methods therefore make the achievement of weight reductions a challenge. The research discussed in this paper developed a lightweight, hollow subframe technology employing high-pressure die casting (HPDC), a method well-suited to reducing wall thickness, as the manufacturing method. Hollow-casting using HPDC was developed as a method of forming water jackets for water-cooled automotive engines.
X