Refine Your Search

Topic

Author

Search Results

Technical Paper

32 Development of Silent Chain Drive System for Motorcycles

2002-10-29
2002-32-1801
Examining the noise reduction of a motorcycle, the requirement of an effective method of reducing a drive chain noise has been a pending issue similarly to noise originating from an engine or exhaust system, etc. Through this study, it became clear that the mechanism of chain noise could be classified into two; low frequency noise originated from cordal action according to the degree of chain engagement and high frequency noise generated by impact when a chain roller hits sprocket bottom. An improvement of urethane resin damper shape, mounted on a drive side sprocket, was effective for noise reduction of the former while our development of a chain drive that combined an additional urethane resin roller with an iron roller worked well for the latter. The new chain system that combined this new idea has been proven to be capable of reducing the chain noise to half compared with a conventional system.
Technical Paper

A Data Analysis Approach to Understand the Value of a Damping Treatment for Vehicle Interior Sound

2003-05-05
2003-01-1409
An in-vehicle study was conducted to understand how damping treatments on the floor of a vehicle affect the interior sound in the vehicle. Three differently formulated damping treatments were tested on three similar sport utility vehicles for this purpose. Numerous on-road sound and vibration data were collected under different operating conditions, and were reduced to understand the value of the damping treatment in controlling interior noise caused by powertrain and rolling-tire/road interaction. The paper discusses different data analysis procedures that were used in this study to understand whether there is a damping treatment that performs better than others in spite of variances in test vehicles, and still minimize the adverse influence of other variables that are related to the vehicle performance variation itself.
Technical Paper

A Design Study to Determine the Impact of Various Parameters on Door Acoustics

2003-05-05
2003-01-1430
Once the design of a door sheetmetal and accessories is confirmed, the acoustics of the door system depends on the sound package assembly. This essentially consists of a watershield which acts as a barrier and a porous material which acts as an absorber. The acoustical performance of the watershield and the reverberant sound build-up in the door cavity control the performance. This paper discusses the findings of a design study that was developed based on design of experiments (DOE) concepts to determine which parameters of the door sound package assembly are important to the door acoustics. The study was based on conducting a minimum number of tests on a five factor - two level design that covered over 16 different design configurations. In addition, other measurements were made that aided in developing a SEA model which is also compared with the findings of the results of the design study.
Technical Paper

A Development Procedure to Improve the Acoustical Performance of a Dash System

2005-05-16
2005-01-2515
This paper discusses a development procedure that was used to evaluate the acoustical performance of one type of dashpanel construction over another type for a given application. Two very different constructions of dashpanels, one made out of plain steel and one made out of laminated steel, were studied under a series of different test conditions to understand which one performs better, and then to evaluate how to improve the overall performance of the inferior dashpanel for a given application. The poorly performing dashpanel was extensively tested with dashmat and different passthroughs to understand the acoustic strength of different passthroughs, to understand how passthroughs affect the overall performance of the dash system, and subsequently to understand how the performance can be improved by improving one of the passthroughs.
Technical Paper

A Graduated Assessment of a Sprayable Waterborne Damping Material as a Viable Acoustical Treatment

2003-05-05
2003-01-1588
Damping treatments have been used in reducing structure-borne noise in vehicles for many years. Although sheet based heat bondable mastic products (often called melt sheets) are quite common in the industry, sprayable products have several advantages and have been cited in the literature. This paper discusses findings of numerous structure-borne noise studies that were conducted on sprayable materials with different base-chemistries. The analyses show that a waterborne product is the most advantageous damping treatment in an automotive assembly process. The results also reveal that application of this product provides effective damping treatment as well as reduces structurally radiated noise.
Technical Paper

A Hybrid Method for Vehicle Axle Noise Simulation with Experimental Validation

2003-05-05
2003-01-1707
Recently, many authors have attempted to represent an automobile body in terms of experimentally derived frequency response functions (FRFs), and to couple the FRFs with a FEA model of chassis for performing a total system dynamic analysis. This method is called Hybrid FEA-Experimental FRF method, or briefly HYFEX. However, in cases where the chassis model does not include the bushing models, one can not directly connect the FRFs of the auto body to the chassis model for performing a total system dynamic analysis. In other cases when the chassis model includes the bushings, the bushing dynamic rates are modeled as constant stiffness rather than frequency dependent stiffness, the direct use of the HYFEX method will yield unsatisfactory results. This paper describes how the FRF's of the auto body and the frequency dependent stiffness data of the bushings can be combined with an appropriate mathematical formulation to better represent the dynamic characteristics of a full vehicle.
Technical Paper

A New Method for Obtaining FRF of a Structure in Area Where Impact Hammer Cannot Reach

2007-05-15
2007-01-2385
The Frequency Response Function (FRF) is a fundamental component to identifying the dynamic characteristics of a system. FRF's have a significant impact on modal analysis and root cause analysis of NVH issues. In most cases the FRF can be easily measured, but there are instances when the measurement is unobtainable due to spatial constraints. This paper outlines a simple experimental method for obtaining a high quality input-output FRF of a structure in areas where an impact hammer can not reach during impact testing. Traditionally, the FRF in such an area is obtained by using a load cell extender with a hammer impact excitation. A common problem with this device is a double hit, that yields unacceptable results.
Technical Paper

A Novel Method and Product to Damp Cylindrical Articles: Constrained Layer Damping Tubing

1999-05-17
1999-01-1676
Constrained layer damping (CLD) is a well known technique to efficiently damp low frequency vibration. CLD employs a viscoelastic material sandwiched between two very stiff, typically metal, layers. While effective over essentially flat surfaces, CLD has not been applicable to cylindrical shapes. In order to damp low frequency vibration in metal pipes, users have been forced to rely on extensional layer damping, typically consisting of thick layers of extruded or molded rubbers. This paper discusses a novel product to damp cylindrical articles such as metal pipes with a constrained layer heat shrink tubing. This product utilizes a stiff heat shrinkable polymeric jacket bonded on the inside with a viscoelastic layer. When shrunk on a metal pipe or rod, a CLD system is produced. The product is typically thinner than an extensional layer damper and is more effective. It also meets the other physical and environmental requirements for a pipe covering.
Technical Paper

A Study of Vibration Reducing Effect on Vehicle Dynamics by Hydraulic Damper on Body Structure

2019-04-02
2019-01-0171
This research investigated the mechanism of the effects of hydraulic dampers, which are attached to vehicle body structures and are known by experience to suppress vehicle body vibration and enhance ride comfort and steering stability. In investigating the mechanism, we employed quantitative data from riding tests, and analytical data from simplified vibration models. In our assessment of ride comfort in riding tests using vehicles equipped with hydraulic dampers, we confirmed effects reducing body floor vibration in the low-frequency range. We also confirmed vibration reduction in unsprung suspension parts to be a notable mechanical characteristic which merits close attention in all cases. To investigate the mechanism of the vibration reduction effect in unsprung parts, we considered a simplified vibration model, in which the engine and unsprung parts, which are rigid, are linked to the vehicle body, which is an elastic body equipped with hydraulic dampers.
Technical Paper

A Tool for Predicting Interior Sound Package Treatment in a Truck

2001-11-12
2001-01-2807
This paper discusses an analytical tool that has been developed to predict what types of interior sound package treatments may be necessary in a truck cab to meet a predetermined target sound level at the driver location. The steps that were taken to develop this tool involved a combination of experimental measurement and analytical based studies. Measurements were conducted to identify the acoustic strengths of the major noise paths through which sound travels from outside to inside the truck. These findings were then used to develop a sound package that reduced the vehicle interior noise to meet the target. Measurements were primarily made on a chassis roll dynamometer with final road verification to substantiate the dynamometer data. Data obtained from these measurements were also used in the analytical model that predicts the impact of various acoustics parts in the vehicle, and has the capability to optimize the sound package treatment in the vehicle.
Technical Paper

A Vibration Transfer Reduction Technique, Making Use of the Directivity of the Force Transmitted from Road Surface to Tire

2000-03-06
2000-01-0096
While there has been an empirical rule telling suspension designers that a slight rearward inclination of the wheel travel locus could improve ride harshness performance, there has not been any quantitative proof on it, to the extent of authors' knowledge. The authors planned to analyze the phenomenon by quantitatively measuring the force transmission via suspension, to find out that the amplitude of longitudinal force transmission to the sprung mass changes significantly depending on the above inclination angle. Further investigation has lead to a conclusion that the force transmission from ground to tire has a sharp directivity. And that the relationship between this direction and the direction of wheel travel is a dominant factor, which decides the magnitude of longitudinal force transmission to the sprung mass. In order to make use of the finding, the optimal wheel center locus inclination in side view has been studied, to minimize the longitudinal force transmission.
Technical Paper

AWD Driveline Isolation In SUV Vehicle

2005-05-16
2005-01-2287
The popularity of AWD passenger vehicles presents a challenge to provide car-like drive-train NVH within a relatively small package space. This paper describes a drive-train NVH case study in which analysis and test were used, in conjunction, to solve an NVH problem. Also, it details a systematic process of using the analytical model to identify and resolve similar problems. The particular problem for this case study is a noise and vibration issue occurring at 75 MPH primarily in the middle seat of an all-wheel drive vehicle. Tests indicated that it may be due to propeller shaft imbalance. Analysis results showed good correlation with the tests for that loading condition. Several solutions were identified, which were confirmed by both test and analysis. The most cost-effective of these solutions was implemented.
Technical Paper

Acceleration of Iterative Vibration Analysis for Form Changes in Large Degrees-of-Freedom Engine Model

2018-04-03
2018-01-1290
Operational analysis of automotive engines using flexible multi-body dynamics is increasingly important from the viewpoint of multi-objective optimization as it can predict not only vibration, but also stress and friction at the same time. Still, the finite element (FE) models used in this analysis have large degrees-of-freedom, so iterative calculation takes a lot of time when there is form change. This research therefore describes a technique that applies a modal differential substructure method (a technique that reduces the degrees of freedom in a FE model) that can simulate form changes in FE models by changing modal mass and modal stiffness in reduced models. By using this method, non-parametric form change in FE model can be parametrically simulated, so it is possible to speed up repeated vibration calculations. In the proposed method, FE model is finely divided for each form change design area, and a reduced model of that divided structure is created.
Technical Paper

Acoustical Performance Testing of Automotive Weatherseals

1993-05-01
931270
Advances in vehicle noise control are leading the automotive industry to place increasing emphasis on weatherseals to block exterior noise. As a result, properly evaluating the acoustical performance of automotive weatherseals is of increasing importance. There is no current specific standard for this testing. Rather, there has been reliance on adaptations of SAE Standard 51400 “Laboratory Measurement of the Airborne Sound Barrier Performance of Automotive Materials and Assemblies” by testing laboratories. However, the 51400 standard addresses testing of flatstock materials and does not readily lend application to pre-formed parts such as weatherseals. For this reason, adaptation of the standard can vary significantly from facility to facility and manufacturer to manufacturer. These differences can be significant and can render comparisons between test results on competing materials very difficult.
Technical Paper

Analysis of CVT Element Vibration by In-Situ Measurement

2020-04-14
2020-01-0906
When the belt contacts a pulley in a pushing belt-type CVT, vibration is generated by frictional force due to rubbing between the individual elements that are components of the belt, which is said to increase wear and noise. The authors speculated that the source of that vibration is misalignment of the secondary pulley and primary pulley V-surfaces. To verify that phenomenon, a newly developed micro data logger was attached to an element of a mass-produced metal pushing V-belt CVT and the acceleration was measured at rotations equal to those at drive (1000 to 2500 r/m). In addition, the results of calculations using a behavior analysis model showed that changes in pulley misalignment influence element vibration, and that the magnitude of the vibration is correlated to the change in the metal pushing V-belt alignment immediately before the element contacts the pulley.
Technical Paper

Analysis of FM Multipath Distortion using Two-Stage and MUSIC Methods

2014-04-01
2014-01-0286
Traditionally, the suitability of wireless terminals for automotive use has been evaluated by conducting repeated driving tests in actual environments. However, this method of evaluation has long presented issues, and the implementation of the method itself is today becoming increasingly challenging. A method of evaluating the suitability of terminals for onboard use by generating virtual radio wave environments on a PC has therefore been developed by applying a two-stage method to multiple-input multiple-output (MIMO)-over-the-air(OTA) evaluation. The radio wave propagation characteristics necessary for the generation of these virtual radio wave environments are set using the multiple signal classification method incorporating an RF recorder. The research discussed in this paper used these methods to analyze the effect of the multipath distortion rate on sound quality in the reception of FM broadcasts.
Technical Paper

Analysis of Rotational Vibration Mechanism of Camshaft at High Engine Speed in Engines with In-Line Four-Cylinder DOHC Configuration

2018-10-30
2018-32-0072
In engines having an inline four cylinder DOHC configuration, the rotational vibrations of camshaft increase at high engine speeds above 10000 rpm, causing an increase of tension in the cam chain. It is therefore difficult to realize an optimum designing of a cam chain system when the durability has to be taken into considerations. Using the simulation we analyzed in this research how the rotational vibrations and tension increase at high engine speeds in an inline four cylinder DOHC engine. As its consequent, it is understood that the increases of rotational vibrations and tension caused by the resonance of the spring mass vibration system in which the cam chain serves as springs and the camshafts as the equivalent masses. Also it is found out that the vibration system is of a unique non-linear type in which the resonance of the fourth order frequency is also excited by the crankshaft torque fluctuations of the second order frequency.
Technical Paper

Application of Noise Control Materials to Trucks and Buses

2002-11-18
2002-01-3063
This paper provides an overview of sound and sound package (noise control) materials that are used in heavy trucks and buses. Transportation noise is a longstanding and complex problem. The challenge is to have a thorough understanding of the source-path-receiver relationship with respect to the noise generation and propagation such that one can find feasible solutions and applications of noise control materials. This paper discusses different types of noise control materials and also provides some examples of different noise control material applications.
Technical Paper

Application of a Structural Reinforcing Material to Improve Vehicle NVH Characteristics

1999-09-28
1999-01-3223
Cavity reinforcement materials are used in the automotive industry to stiffen hollow cavities in vehicle body constructions. Typical areas of use include the engine rails, rocker panels, roof support or any other cavity in need of structural reinforcement. Use of these materials can allow for significant reductions in vehicle weight and increase structural stiffness with minimal impact to production tooling. Additional benefits can be gained by using the material as a physical barrier to the propagation of noise, water and dust. The objective of this paper is to describe a case study which implemented a new type of cavity reinforcing material to improve low frequency vehicle noise and vibration characteristics.
Technical Paper

Audio Engineering Principles for Reverberation Room Sound Systems

2003-05-05
2003-01-1678
High levels of broadband random noise are generally required for conducting sound transmission loss and sound absorption tests within reverberation rooms. However, the sound system components such as loudspeakers, amplifiers, and other elements are often selected with little consideration of the audio engineering principles that govern device as well as system operation. This paper will explore some of the requirements for reverberation room sound systems starting with the acoustical power spectrum needed to overcome the transmission loss of high performance barrier assemblies, the background noise in the receiving room, the background noise floor of measuring instruments, and air absorption within the reverberation room.
X