Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1.2GPa Advanced High Strength Steel with High Formability

2014-04-01
2014-01-0991
To reduce the Body in White (BIW) mass, it is necessary to expand the application of Advanced High-Strength Steels (AHSS) to complex shaped parts. In order to apply AHSS to complex shaped parts with thinner gauge, high formability steel is required. However, higher strength steels tend to display lower elongations, compared with low/medium strength steels. Current AHSS are applied to limited parts for this reason. The new 1.2GPa material, with high formability, was developed to solve this issue. The mechanical property targets for the high elongation 1.2GPa material were achieved by precise metallurgical optimization. Many material aspects were studied, such as formability, weldabilty, impact strength, and delayed fracture. As the result of this development, 1.2GPa AHSS has been applied to a new vehicle launched in 2013.The application of this material was the 1st in the world, and achieved a 11kg mass reduction.
Technical Paper

248mm Elliptical Torque Converter from DaimlerChrysler Corporation

2007-04-16
2007-01-0241
The need for efficient space utilization has provided a framework for the design of a 248mm family of torque converters that supports a wide choice of engine and transmission combinations. The axial length of the part and its weight have been substantially reduced while the performance range has been broadened without degradation of efficiency. The new converter operates in an expanded slipping clutch mode. It significantly contributes to the performance and fuel economy improvements of related vehicles. To meet the cost target, the comprehensive lineup and the resulting complexity have required a high level of component interchangeability. During the design phase, the manufacturing core competencies were scrutinized and process redundancies eliminated, both resulting in optimization of material selection and applicable technology.
Technical Paper

A Computerized Optimization Method Of Engine Mounting System

2003-05-05
2003-01-1461
This paper presents a method for optimization design of an engine mounting system subjected to some constraints. The engine center of gravity, the mount stiffness rates, the mount locations and/or their orientations with respect to the vehicle can be chosen as design variables, but some of them are given in advance or have limitations because of the packaging constraints on the mount locations, as well as the individual mount rate ratio limitations imposed by manufacturability. A computer program, called DynaMount, has been developed that identifies the optimum design variables for the engine mounting system, including decoupling mode, natural frequency placement, etc.. The degree of decoupling achieved is quantified by kinetic energy distributions calculated for each of the modes. Several application examples are presented to illustrate the validity of this method and the computer program.
Technical Paper

A Design Study to Determine the Impact of Various Parameters on Door Acoustics

2003-05-05
2003-01-1430
Once the design of a door sheetmetal and accessories is confirmed, the acoustics of the door system depends on the sound package assembly. This essentially consists of a watershield which acts as a barrier and a porous material which acts as an absorber. The acoustical performance of the watershield and the reverberant sound build-up in the door cavity control the performance. This paper discusses the findings of a design study that was developed based on design of experiments (DOE) concepts to determine which parameters of the door sound package assembly are important to the door acoustics. The study was based on conducting a minimum number of tests on a five factor - two level design that covered over 16 different design configurations. In addition, other measurements were made that aided in developing a SEA model which is also compared with the findings of the results of the design study.
Technical Paper

A Failure Criterion for Stretch Bendability of Advanced High Strength Steels

2006-04-03
2006-01-0349
Studies in an Angular Stretch Bend Test (ASBT) have demonstrated that the failure location moves from the side wall to punch nose area. This occurs as the R/T ratio decreases below a certain limit and applies to most low carbon steels with the exception of Dual Phase (DP) steels. Such behavior in DP steels indicates that bending effects have a severe impact on the formability of DP materials. Therefore, the traditional criterion using the forming limit curve (FLC) is not suitable to assess the formability at punch radius areas for DP steels due in part to its uniqueness of unconventional microstructures. In this paper, a new failure criterion, ‘Bending-modified’ FLC (BFLC), is proposed by extending the traditional FLC using the “Stretch Bendability Index” (SBI) concept for the stretch bendability assessment.
Technical Paper

A Fully Variable Mechanical Valvetrain with a Simple Moving Pivot

2005-04-11
2005-01-0770
A continuously variable lift, duration and phase mechanical lift mechanism is described, as applied to the intake valvetrain of a SOHC, 4-valve per cylinder, four-cylinder production engine. Improvements in fuel economy were sought by reduction of pumping losses and improved charge preparation, and optimization of WOT torque was attempted by variation of intake valve closing angle. Adjustment of the mechanism is achieved by movement of the pivot shaft for the rocker arms. The relationship between lift, duration and phase is predetermined at the design stage, and is fixed during operation. There is considerable design flexibility to achieve the envelope of lift curves deemed desirable. The operation of the mechanism is described, as are the development procedure, testing with fixed cams, some cycle simulation, friction testing on a separate rig and dyno testing results for idle, part load and WOT.
Technical Paper

A Grammatical Evolution Approach to System Identification of Laser Lap Welding

2006-04-03
2006-01-1614
Laser lap welding quality is a non-linear response based on a host of categorical and numeric material and process variables. This paper describes a Grammatical Evolution approach to the structure identification of the laser lap welding process and compares its performance with linear regression and a neuro-fuzzy inference system.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A Simple Approach to Selecting Automotive Body-in-White Primary-Structural Materials

2002-07-09
2002-01-2050
A simple strategy for building lightweight automobile body-in-whites (BIWs) is developed and discussed herein. Because cost is a critical factor, expensive advanced materials, such as carbon fiber composites and magnesium, must only be used where they will be most effective. Constitutive laws for mass savings under various loading conditions indicate that these materials afford greater opportunity for mass saving when used in bending, buckling or torsion than in tensile, shear or compression. Consequently, it is recommended that these advanced materials be used in BIW components subject to bending and torsion such as rails, sills, “A-B-C” pillars, etc. Furthermore, BIW components primarily subject to tension, compression, or shear, such as floor pans, roofs, shock towers, etc., should be made from lower cost steel. Recommendations for future research that are consistent with this strategy are included.
Technical Paper

A Simple Engine Model for Idle Speed Control

1985-02-01
850291
This paper describes a simple engine model at idling and it applies particularly to idle speed control. Through linearization in the neighborhood of the nominal operating points (650 rpm), the engine is expressed as a reduced-order constant coefficient state variable (2 state) model. It was produced through the system order-reduction method. The strategy for controlling idle speed uses the Linear Quadratic and Integral (LQI) optimal control theory. The tracking controller was designed using a state variable engine model, and the performance index was minimized. Since state variables are artificially introduced, they are not directly accessible. Therefore, they must be estimated in accordance with a stored dynamic model (i.e. observer), in which the engine dynamic behavior is estimated on the basis of a state variable model which represents the engine's internal states, in determining controlling values.
Technical Paper

A Study of Technology for Assembling Vehicle Endurance Reliability

1991-09-01
911924
The ways in which vehicles are used in the field are continually becoming more diverse. In order to provide the optimum solution with respect to performance and weight, it is necessary to be able to assure vehicle endurance reliability with a high degree of accuracy in relation to the manner of use in each market. This situation has increased the importance of accurately quantifying the ways in which vehicles are used in the field and of designing vehicles with sufficient endurance reliability to match the usage requirements. This report presents a “market model” by which the manner of usage in the field can be treated quantitatively using combinations of environmental factors that influence the road load, drive load and corrosion load, representing typical loads vehicles must withstand.
Technical Paper

A Study of a Gasoline-fueled HCCI Engine∼Mode Changes from SI Combustion to HCCI Combustion∼

2008-04-14
2008-01-0050
Since the stable operating region of a gasoline-fueled HCCI engine is limited to the part load condition, a mode change between SI and HCCI combustion is required, which poses an issue due to the difference in combustion characteristics. This report focuses on the combustion characteristics in the transitional range. The combustion mode in the transitional range is investigated by varying the internal EGR rate, intake air pressure, and spark advance timing in steady-state experiments. In this parametric study, stable SI-CI combustion is observed. This indicates that the combustion mode transition is possible without misfiring or knocking, regardless of the speed of variable valve mechanism which includes VVA, VVEL, VTEC, VVL and so on, though the response of intake air pressure still remains as a subject to be examined in the actual application.
Technical Paper

A Study on Engine Bearing Performance Focusing on the Viscosity-Pressure Characteristic of the Lubricant and Housing Stiffness

1996-05-01
961144
It is important to understand the influence of housing stiffness on bearing performance, particularly for the connecting rod bearings of automotive engines. It is known that the engine lubricant shows a piezoviscous characteristic whereby its viscosity changes under the influence of pressure. Engine bearings under a heavy load are apt to be influenced in this way. In this study, the effects of connecting rod stiffness and lubricant piezoviscosity on bearing performance were examined by elastohydrodynamic lubrication (EHL) analysis under conditions corresponding to the high-speed operation of an actual engine. The results indicated that under such heavy load conditions housing stiffness greatly affects friction loss because of lubricant piezoviscosity. It was also found that the piezoviscosity of the lubricant has a large effect on bearing performance, as does its viscosity under atmospheric pressure.
Technical Paper

A Study on the Torque Capacity of a Metal Pushing V-Belt for CVTs

1998-02-23
980822
The mechanism causing the micro slip characteristic of a metal CVT belt during torque transmission was analyzed, focusing on the gap distribution between the elements. It was hypothesized that gaps between the elements cause slip to occur between the elements and the pulleys when the belt is squeezed between the two halves of the pulleys, and the slip ratio was calculated theoretically on that assumption. The μ-v (friction coefficient versus sliding velocity) characteristic between the elements and the pulleys was measured and the results were used in calculating the slip ratio. As a result, a simulation procedure was developed for predicting the slip-limit torque of the belt on the basis of calculations. The slip ratio found by simulation and the calculated slip-limit torque showed good quantitative agreement with the experimental data, thereby confirming the validity of the simulation procedure.
Technical Paper

A Unique Dual-Mode Muffler

1989-11-01
891356
The techniques harmonizing the contradiction which consists of exhaust noise reduction and engine power increase, have been required for the exhaust muffler. This techniques rapidly improved by means of the clarification due to the acoustic theories and the flow analyses. Recently, according to the passenger car tendency toward high grade and high performance, demands for low noise and high power exhaust systems are increasing year by year. The “Dual Mode Muffler” system (abbreviated, below, DMM) mounted on Nissan Cedric, Grolia and Cima series, installed in 1987, is achieved the consistent of the quietness and the engine power performance. This system is the first control type exhaust system for the 4 wheel car. On previous paper, the analyses of acoustic characteristics on DMM were mainly shown. The analyses of exhaust pressure characteristics are also an important theory along with the acoustic in the development of the exhaust system.
Technical Paper

An Application of Structural-Acoustic Analysis to Car Body Structure

1985-05-15
850961
In order to calculate efficiently the characteristics of car body vibration and the acoustic characteristic of the passenger compartment, a structural-acoustic analysis system, ‘CAD-B’, was developed. This system divides the body into three components - front body, main cabin and rear body. The characteristics of front and rear body vibration are expressed in modal parameters. The vibration characteristic throughout the car body is then calculated through the building block approach, while the main cabin remains in finite elements. A good agreement in eigen pairs was seen between this approach and the conventional finite element method. As for the passenger compartment, it is divided into finite elements and its eigen pairs are calculated. Then by linking body vibration with the acoustic characteristic of the passenger compartment, sound pressure in the passenger compartment is calculated.
Technical Paper

An Application of Structural-Acoustic Coupling Analysis to Boom Noise

1989-09-01
891996
Reduction of interior noise is an important factor in vehicle design and many experimental and theoretical studies have been carried out to find effective noise reduction techniques. Previously, we developed a Structural-Acoustic Uncoupled Program, ACOUST3, as a technique for estimating low-frequency noise in the vehicle interior. In the present work, ACOUST3 has been extended to construct an acoustic coupling analysis system, ASCA, which is used to calculate low-frequency noise, such as boom noise. In order to calculate low-frequency noise accurately, it is necessary to represent the vibration characteristics of the trimmed body as closely as possible. To do this, we built a trimmed body model, incorporating 22 trim parts, based on vibration test results, and found that the calculated results obtained with the model correlated well with experimental data.
Technical Paper

An Efficient Procedure for Vehicle Thermal Protection Development

2005-04-11
2005-01-1904
Vehicle thermal protection is an important aspect of the overall vehicle development process. It involves optimizing the exhaust system routing and designing heat shields to protect various components that are in near proximity to the exhaust system. Reduced time to market necessitates an efficient process for thermal protection development. A robust procedure that utilizes state of the art CFD simulation techniques proactively during the design phase is described. Simulation allows for early detection of thermal issues and development of countermeasures several months before prototype vehicles are built. Physical testing is only used to verify the thermal protection package rather than to develop heat shields. The new procedure reduces the number of physical tests and results in a robust, efficient methodology.
Technical Paper

An Experimental Study on the Effect of Intake Primary Runner Blockages on Combustion and Emissions in SI Engines under Part-Load Conditions

2004-10-25
2004-01-2973
Charge motion is known to accelerate and stabilize combustion through its influence on turbulence intensity and flame propagation. The present work investigates the effect of charge motion generated by intake runner blockages on combustion characteristics and emissions under part-load conditions in SI engines. Firing experiments have been conducted on a DaimlerChrysler (DC) 2.4L 4-valve I4 engine, with spark range extending around the Maximum Brake Torque (MBT) timing. Three blockages with 20% open area are compared to the fully open baseline case under two operating conditions: 2.41 bar brake mean effective pressure (bmep) at 1600 rpm, and 0.78 bar bmep at 1200 rpm. The blocked areas are shaped to create different levels of swirl, tumble, and cross-tumble. Crank-angle resolved pressures have been acquired, including cylinders 1 and 4, intake runners 1 and 4 upstream and downstream of the blockage, and exhaust runners 1 and 4.
Technical Paper

Analysis of Disc Brake Squeal, 1992

1992-02-01
920553
Eliminating squeal noise generated during braking is an important task for the improvement of vehicle passengers' comfort. Considerable amount of research and development works have been done on the problem to date. In this study, we focused on the analyses of friction self-excited vibration and brake part resonance during high frequency brake squeal. Friction self-excited vibration is caused by the dry friction between pads and rotor, and occurs as a function of their relative sliding velocities. Its vibration frequency can be calculated in relation to the mass and stiffness of the pad sliding surface. Frequency responses of the brake assembly were measured and the vibration modes of the pad, disc and caliper during squeal were identified through modal analysis. Further study led to the development of a computer simulation method for analyzing the vibration modes of brake parts. Analytical results obtained using the method agreed well with the corresponding experimental data.
X