Refine Your Search

Topic

Search Results

Technical Paper

A CAE Based Stochastic Assessment and Improvement of Vehicle NCAP Response

2004-03-08
2004-01-0458
One of the primary issues in the interpretation of vehicle impact response data, observed from vehicle crash test events, is coping with variability. This vehicle response inconsistency generally causes test results to be unpredictable and makes CAE test validation work difficult as well. This paper, considering the uncertain characteristics of vehicle impact events, has implemented a stochastic assessment of vehicle NCAP response variation through a CAE vehicle impact model, and it has accomplished the three primary study objectives as stated follows: 1) Identify the response variation causing factors stochastically from various structural and environmental factor candidates and quantify the degree of their influences on crash response, 2) Develop a methodology for interpreting the significance of the factor effects in conjunction with vehicle impact mechanics and physics, and 3) Implement a stochastic improvement of the vehicle NCAP responses and their repeatability
Technical Paper

Alliance Principle 1.4: Visual Downangle Criteria for Navigation and Telematics Displays in Vehicles

2005-04-11
2005-01-0425
The Alliance of Automotive Manufacturers (Alliance) has produced a document in which Principle 1.4 gives criteria and methods for calculating downvision angles to navigation and telematics displays in vehicles. This paper describes the details of the criteria and methods for determining compliance. Visual displays placed high in the vehicle instrument panel help drivers to use their peripheral vision to monitor the roadway for major developments, even during brief glances to the display. The Alliance has developed two criteria to define the maximum allowable downward viewing angle for displayed information in North American vehicles. One criterion is for use in two-dimensional Computer Aided Design (CAD) analyses, and one is for use in three-dimensional CAD analyses. Alliance Principle 1.4 is consistent with known driver performance research data, and known facts about the peripheral sensitivity of the human visual system.
Technical Paper

An Approach To Front-End System Design for Pedestrian Safety

2001-03-05
2001-01-0353
An approach to a solution to conflicts of interest posed by new pedestrian safety requirements is presented here. The effects of various design parameters on pedestrian safety, and the resulting influence on other requirements are examined. Limitations and possible solution envelopes are determined with regard to styling, packaging and functionality. Material choice and the stiffness of the structure are used as variables to fine-tune the system. The paper explores the effects of using current front-end materials and new material options versus what can be achieved by modifying or developing designs and structures to fulfil the set of conflicting requirements. Computer Aided Engineering (CAE) techniques are used extensively for this work, in order to determine the sensitivity of the behaviour of front-end systems to design and material characteristics.
Technical Paper

An External Explosive Airbag Model for an Innovative Inflatable Bumper (I-bumper) Concept

2008-04-14
2008-01-0508
In the I-bumper (inflatable bumper) concept [1], two explosive airbags are released just before the main body-to-body crash in order to absorb the kinetic energy of colliding vehicles. The release also actuates other components in the I-bumper, including a movable bumper and an energy absorption morphing lattice structure. A small explosive charge will be used to deploy the airbag. A conventional airbag model will be used to reduce the crash energy in a controlled manner and reduce the peak impact force. An analytic model of the explosive airbag is developed in this paper for the I-bumper system and for its optimal design, while the complete system design (I-bumper) will be discussed in a separate paper. Analytical formulations for an explosive airbag will be developed and major design variables will be identified. These are used to determine the required amount of explosive and predict airbag behavior, as well to predict their impact on the I-bumper system.
Technical Paper

An Innovative I-Bumper Concept for Improved Crashworthiness of Military and Commercial Vehicles

2008-04-14
2008-01-0512
The greatest demand facing the automotive industry has been to provide safer vehicles with high fuel efficiency at minimum cost. Current automotive vehicle structures have one fundamental handicap: a short crumple zone for crash energy absorption. This leaves limited room for further safety improvement, especially for high-speed crashes. Breakthrough technologies are needed. One potential breakthrough is to use active devices instead of conventional passive devices. An innovative inflatable bumper concept [1], called the “I-bumper,” is being developed by the authors for crashworthiness and safety of military and commercial vehicles. The proposed I-bumper has several active structural components, including a morphing mechanism, a movable bumper, two explosive airbags, and a morphing lattice structure with a locking mechanism that provides desired rigidity and energy absorption capability during a vehicular crash.
Technical Paper

Assessing Error in Reliability Estimates Obtained via CAE Simulations

2003-03-03
2003-01-0146
When using a math model to estimate the failure rate of a product, or the mean and standard deviation of performance characteristics of the product, one important issue is the accuracy of the estimates. All math models have error. This error will be transmitted to the error in the estimates of failure rate, mean, and standard deviation. This paper presents a method to calculate the bounds on the transmitted error, which can then be used to 1) obtain confidence bounds on estimates of mean, standard deviation, and failure rate; and 2) establish accuracy requirements on math models.
Technical Paper

CAE Fatigue Prediction of Fuel Tank Straps using Proving Ground Loads

2005-04-11
2005-01-1405
The durability of fuel tank straps is essential for vehicle safety. Extensive physical tests are conducted to verify designs for durability. Due to the complexity of the loads and the fuel-to-tank interaction, computer-aided-engineering (CAE) simulation has had limited application in this area. This paper presents a CAE method for fuel tank strap durability prediction. It discusses the analytical loads, modeling of fuel-to-tank interaction, dynamic analysis methods, and fatigue analysis methods. Analysis results are compared to physical test results. This method can be used in either a fuel-tank-system model or a full vehicle model. It can give directional design guidance for fuel tank strap durability in the early stages of product development to reduce vehicle development costs.
Technical Paper

Computer Aided Simulations in Machining Applications

2005-04-11
2005-01-0518
Computer applications have been widely used to assist product design. The successes and sophistication of computer aided engineering (CAE) techniques are respectfully recognized in this field. CAE applications in the manufacturing area however are still developing, although the manufacturing community is increasingly starting to pay attentions to computer simulations in its daily workings. This paper will briefly introduce some of these applications and promote awareness of computer simulations in manufacturing area. It contains four main sections: finite element analysis (FEA) in machining fixture design, FEA applications in component assembly, machining process simulations and machining vibrations in the milling operation. Each section comes with a practical case study, potential benefits are identified and conclusions are presented by using an integrated design and analysis approach.
Technical Paper

Computer-Aided Vehicle Design and Packaging Using Standard Naming Design Methodology

2003-03-03
2003-01-1302
Vehicle design and packaging is a repetitive and tedious process that involves frequent engineering and design changes. To improve design efficiency, a standard naming vehicle design methodology is proposed in this paper. For the geometric or the functional object used in the vehicle context, a standard name is assigned and also used as a unique object feature through its life cycle. With the proposed standard naming design methodology, the engineering knowledge can be efficiently embedded into the CAD design, and hence, vehicle design can be executed in a more automated fashion. Work case of the standard naming design methodology is illustrated by a vehicle design and packaging application using CATIA V5.
Technical Paper

Evolution of Structural Instrument Panels

2002-03-04
2002-01-1270
In structural Instrument Panels the conventionally used cross car beam is eliminated by using the plastic structure as a load carrying construction. Due to the continuous search for lowering costs and weight in the development of new cars, the concept has been applied a number of times. Many articles have been published since on this subject, describing the design concepts, engineering development and types of plastic material applied. In general, the structural instrument panel assemblies show to have substantially lower cost and weight compared with conventional cross car beam based instrument panel structures while all of performance requirements are met. Also, improved packaging space, reduction in assembly time and improved recyclability are seen as major advantages. The use of state of the art Computer-Aided Engineering (CAE) has proved to reduce development time and costs.
Technical Paper

First Order Analysis - New CAE Tools for Automotive Body Designers

2001-03-05
2001-01-0768
Computer Aided Engineering (CAE) has been successfully utilized in automotive industries. CAE numerically estimates the performance of automobiles and proposes alternative ideas that lead to the higher performance without building prototypes. Most automotive designers, however, cannot directly use CAE due to the sophisticated operations. In this paper, we propose a new breed of CAE, First Order Analysis (FOA), for automotive body designers. The basic ideas include (1) graphic interfaces using Microsoft/Excel to achieve a product oriented analysis (2) use of mechanics of materials to provide the useful information for designs, (3) the topology optimization method using function oriented elements. Further, some prototypes of software are presented to confirm the method for FOA presented here.
Technical Paper

Free Form Fabrication Beginners Workshop

1994-04-01
941230
Free form fabrication, or rapid prototyping as it is commonly known, is the creation of a physical entity, directly from numerical description, using an additive process. The mathematical data used is typically in the form of a 3D CAD file, but it may also be obtained from a reverse engineering process. This paper presents a review of three of the leading FFF (free form fabrication) systems which are commercially available. Time constraints will allow us to describe only three of these products. Although this does not do justice to a technology where there are more than 30 different systems in various stages of development, these examples represent the vast majority of machines which are in the marketplace today.
Technical Paper

Friction Measurement in the Valve Train with a Roller Follower

1994-03-01
940589
The valve train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod forces, and cam speed. Results are presented for one exhaust valve of a motored Cummins L-10 engine. The instantaneous cam/roller friction force was determined from the instantaneous roller speed and the pin friction torque. The pushrod force and displacement were also measured. Friction work loss was determined for both cam and roller interface as well as the upper valve train which includes the valve pushrod, rocker arm, valve guide, and valve. Roller follower slippage on the cam was also determined. A kinematic analysis with the measured data provided the normal force and contact stress at cam/roller interface.(1) Finally, the valve train friction was found to be in the mixed lubrication regime.(2) Further efforts will address the theoretical analysis of valve train friction to predict roller slippage.
Journal Article

Impact of Fuel Sprays on In-Cylinder Flow Length Scales in a Spark-Ignition Direct-Injection Engine

2017-03-28
2017-01-0618
The interaction of fuel sprays and in-cylinder flow in direct-injection engines is expected to alter kinetic energy and integral length scales at least during some portions of the engine cycle. High-speed particle image velocimetry was implemented in an optical four-valve, pent-roof spark-ignition direct-injection single-cylinder engine to quantify this effect. Non-firing motored engine tests were performed at 1300 RPM with and without fuel injection. Two fuel injection timings were investigated: injection in early intake stroke represents quasi-homogenous engine condition; and injection in mid compression stroke mimics the stratified combustion strategy. Two-dimensional crank angle resolved velocity fields were measured to examine the kinetic energy and integral length scale through critical portions of the engine cycle. Reynolds decomposition was applied on the obtained engine flow fields to extract the fluctuations as an indicator for the turbulent flow.
Technical Paper

In Vehicle Exhaust Mount Load Measurement and Calculation

2006-04-03
2006-01-1258
Exhaust durability is an important measure of quality, which can be predicted using CAE with accurate mount loads. This paper proposes an innovative method to calculate these loads from measured mount accelerations. A Chrysler vehicle was instrumented with accelerometers at both ends of its four exhaust mounts. The vehicle was tested at various durability routes or events at DaimlerChrysler Proving Grounds. These measured accelerations were integrated to obtain their velocities and displacements. The differences in velocities and displacements at each mount were multiplied by its damping and stiffness rates to obtain the mount load. The calculation was conducted for all three translational directions and for all events. The calculated mount loads are shown within reasonable range. Along with CAE, it is suggested to explore this method for exhaust durability development.
Technical Paper

Lead-time Reduction in Stamping CAE and Die Face Development using Massively Parallel Processing in Forming Simulations

2007-04-16
2007-01-1678
Since 1997, General Motors Body Manufacturing Engineering - Die Engineering Services (BME-DES) has been working jointly with our software vendor to develop and implement a parallel version of stamping simulation software for mass production analysis applications. The evolution of this technology and the insight gained through the implementation of DMP/MPP technology as well as performance benchmarks are discussed in this publication.
Technical Paper

Lightweight Magnesium Intensive Body Structure

2006-04-03
2006-01-0523
This paper describes a lightweight magnesium intensive automobile body structure concept developed at DaimlerChrysler to support a high fuel-efficiency vehicle project. This body structure resulted in more than 40% weight reduction over a conventional steel structure while achieving significantly improved structural performance as evaluated through CAE simulations. A business case analysis was conducted and showed promising results. One concept vehicle was built for the purpose of demonstrating concept feasibility. The paper also identifies areas for further development to enable such a vehicle to become a production reality at a later time.
Technical Paper

Modal Overlap at Low Frequencies - A Stochastic Approach for Vehicle System Modal Management

2003-05-05
2003-01-1612
In the early stages of a vehicle program, it is a common practice to set target ranges for the global body, suspension and powertrain modes. This modal management process allows engineers to avoid potential noise and vibration problems stemming from strong overlap of major global modes. Before the first prototype hardware is built, finite element models of the body, suspension and powertrain are usually exercised to compare predicted versus targeted ranges of the major system modes in the form of a modal management chart. However, uncertainty associated with the design parameters, manufacturing process and other sources can lead to a major departure from the design intent when the first hardware prototype is built. In this study, a first order reliability method is used to predict variance of the eigen values due to parameter uncertainties. This allows the CAE engineers to add a “three sigma” bound on the eigen values reported in the modal management chart.
Technical Paper

Multiple Solutions by Performance Band: An Effective Way to Deal with Modeling Error

2004-03-08
2004-01-1688
Robust optimization usually requires numerous functional evaluations, which is not feasible when the functional evaluation is time-consuming. Examples in automobile industry include crash worthiness/safety and fatigue life simulations. In practice, a response surface model (RSM) is often used as a surrogate to the CAE model, so that robust optimization can be carried out. However, if the error in the RSM is significant, the solution based on the RSM can be invalid. This paper proposes a method of finding multiple candidate solutions, all of which have similar predicted performances. This approach is effective in finding the close-to-optimum solutions when the model has error, and providing design alternatives. Examples are provided to illustrate the method.
Technical Paper

Optimization of Damping Treatment for Structure Borne Noise Reduction

2003-05-05
2003-01-1592
In automotive industry, all passenger vehicles are treated with damping materials to reduce structure borne noise. The effectiveness of damping treatments depends upon design parameters such as choice of damping materials, locations and size of the treatment. This paper proposes a CAE (Computer Aided Engineering) methodology based on finite element analysis to optimize damping treatments. The developed method uses modal strain-energy information of bare structural panels to identify flexible regions, which in turn facilitates optimization of damping treatments with respect to location and size. The efficacy of the method is demonstrated by optimizing damping treatment for a full-size pick-up truck. Moreover, simulated road noise performances of the truck with and without damping treatments are compared, which show the benefits of applying damping treatment.
X