Refine Your Search

Topic

Search Results

Technical Paper

A Comprehensive Study of Door Slam

2004-03-08
2004-01-0161
As part of an ongoing technical collaboration between Ford and Rouge Steel Company, a comprehensive study of door slam event was undertaken. The experimental phase of the project involved measurements of accelerations at eight locations on the outer panel and strains on six locations of the inner panel. Although slam tests were conducted with window up and window down, results of only one test is presented in this paper. The CAE phase of the project involved the development of suitable “math” model of the door assembly and analysis methodology to capture the dynamics of the event. The predictability of the CAE method is examined through detailed comparison of accelerations and strains. While excellent agreement between CAE and test results of accelerations on the outer panel is obtained, the analysis predicts higher strains on the inner panel than the test. In addition, the tendency of outer panel to elastically buckle is examined.
Technical Paper

A Computational Methodology for Fatigue Life Prediction Under Multiaxial Non-Proportional Loading

2001-03-05
2001-01-0837
A methodology for predicting the fatigue initiation life in metals experiencing multiaxial non-proportional loading is presented. The methodology utilizes nonlinear finite-element analysis to determine the stress distribution of the loaded component. This distribution is used in conjunction with a physically based damage law to determine the cycles to failure. The damage law is based on the fatigue prediction method introduced by Dang Van [1], and further developed by Papadopoulos [2] and Morel [3]. The fatigue damage initiation is treated as the persistent crystalline slip phenomenon taking place on the order of a grain or few grains. The damage variable is chosen to be the accumulated plastic strain at this scale. The initiation life is determined when the damage variable reaches a critical value. The developed methodology is applicable to both in-phase and out-of-phase loading, without any empirical adjustment parameter.
Technical Paper

A Failure Criterion for Stretch Bendability of Advanced High Strength Steels

2006-04-03
2006-01-0349
Studies in an Angular Stretch Bend Test (ASBT) have demonstrated that the failure location moves from the side wall to punch nose area. This occurs as the R/T ratio decreases below a certain limit and applies to most low carbon steels with the exception of Dual Phase (DP) steels. Such behavior in DP steels indicates that bending effects have a severe impact on the formability of DP materials. Therefore, the traditional criterion using the forming limit curve (FLC) is not suitable to assess the formability at punch radius areas for DP steels due in part to its uniqueness of unconventional microstructures. In this paper, a new failure criterion, ‘Bending-modified’ FLC (BFLC), is proposed by extending the traditional FLC using the “Stretch Bendability Index” (SBI) concept for the stretch bendability assessment.
Technical Paper

A Simple Approach to Selecting Automotive Body-in-White Primary-Structural Materials

2002-07-09
2002-01-2050
A simple strategy for building lightweight automobile body-in-whites (BIWs) is developed and discussed herein. Because cost is a critical factor, expensive advanced materials, such as carbon fiber composites and magnesium, must only be used where they will be most effective. Constitutive laws for mass savings under various loading conditions indicate that these materials afford greater opportunity for mass saving when used in bending, buckling or torsion than in tensile, shear or compression. Consequently, it is recommended that these advanced materials be used in BIW components subject to bending and torsion such as rails, sills, “A-B-C” pillars, etc. Furthermore, BIW components primarily subject to tension, compression, or shear, such as floor pans, roofs, shock towers, etc., should be made from lower cost steel. Recommendations for future research that are consistent with this strategy are included.
Technical Paper

Crush Strength of Aluminum 5052-H38 Honeycomb Materials under Combined Compressive and Shear Loads

2003-03-03
2003-01-0331
The crush strength of aluminum 5052-H38 honeycomb materials under combined compressive and shear loads are investigated here. The experimental results indicate that both the peak and crush strengths under combined compressive and shear loads are lower than those under pure compressive loads. A yield function is suggested for honeycomb materials under the combined loads based on a phenomenological plasticity theory. The microscopic crush mechanism under the combined loads is also investigated. A microscopic crush model based on the experimental observations is developed. The crush model includes the assumptions of the asymmetric location of horizontal plastic hinge line and the ruptures of aluminum cell walls so that the kinematic requirement can be satisfied. In the calculation of the crush strength, two correction factors due to non-associated plastic flow and different rupture modes are considered.
Technical Paper

Effect of Thermal Treatments and Carbon Potential on Bending Fatigue Performance of SAE 4320 Gear Steel

1999-03-01
1999-01-0603
This project investigated the effect of carburizing carbon-potential and thermal history on the bending fatigue performance of carburized SAE 4320 gear steel. Modified-Brugger cantilever bending fatigue specimens were carburized at carbon potentials of 0.60, 0.85, 1.05, and 1.25 wt. pct. carbon, and were either quenched and tempered or quenched, tempered, reheated, quenched, and tempered. The reheat treatment was designed to lower the solute carbon content in the case through the formation of transition carbides and refine the prior austenite grain size. Specimens were fatigue tested in a tension/tension cycle with a minimum to maximum stress ratio of 0.1. The bending fatigue results were correlated with case and core microstructures, hardness profiles, residual stress profiles, retained austenite profiles, and component distortion.
Technical Paper

Effects of Impact Velocity on Crush Behavior of Honeycomb Specimens

2004-03-08
2004-01-0245
Effects of impact velocity on the crush behavior of aluminum 5052-H38 honeycomb specimens are investigated by experiments. An impact test machine using pressurized nitrogen was designed to perform dynamic crush tests. A test fixture was designed such that inclined loads can be applied to honeycomb specimens in dynamic crush tests. The results of dynamic crush tests indicate that the effects of impact velocity on the normal and inclined crush strengths are significant. The trends of the inclined crush strengths for specimens with different in-plane orientation angles as functions of impact velocity are very similar to that of the normal crush strength. Experimental results show similar progressive folding mechanisms for honeycomb specimens under pure compressive and inclined loads. Under inclined loads, the inclined stacking patterns were observed. The inclined stacking patterns are due to the asymmetric locations of the horizontal plastic hinge lines.
Technical Paper

Failure Mechanisms of Sandwich Specimens With Epoxy Foam Cores Under Bending Conditions

2003-03-03
2003-01-0327
Sandwich specimens with DP590 steel face sheets and structural epoxy foam cores are investigated under three-point bending conditions. Experimental results indicate that the maximum loads correspond to extensive cracking in the foam cores. Finite element simulations of the bending tests are also performed to understand the failure mechanisms of the epoxy foams. In these simulations, the plastic behavior of the steel face sheets is modeled by the Mises yield criterion with consideration of plastic strain hardening. A pressure sensitive yield criterion is used to model the plastic behavior of the epoxy foam cores. The epoxy foams are idealized to follow an elastic perfectly plastic behavior. The simulation results indicate that the load-displacement responses of some sandwich specimens agree with the experimental results.
Technical Paper

Failure of Laser Welds in Aluminum Sheets

2001-03-05
2001-01-0091
In this paper, the formability of AA5754 aluminum laser-welded blanks produced by Nd:YAG laser welding is investigated under biaxial straining conditions. The mechanical behavior of the laser-welded blanks is first examined by uniaxial tensile tests conducted with the weld line perpendicular to the tensile axis. Shear failure in the weld metal is observed in the experiments. Finite element simulations under generalized plane strain conditions are then conducted in order to further understand the effects of weld geometry and strength on the shear failure and formability of these welded blanks. The strain histories of the material elements in the weld metal obtained from finite element computations are finally used in a theoretical failure analysis based on the material imperfection approach to predict the failure strains for the laser-welded blanks under biaxial straining conditions.
Technical Paper

Fatigue Failures of Spot Friction Welds in Aluminum 6111-T4 Sheets Under Cyclic Loading Conditions

2006-04-03
2006-01-1207
Fatigue failures of spot friction welds in lap-shear specimens of aluminum 6111-T4 sheets under cyclic loading conditions are investigated in this paper. The paths of fatigue cracks near the spot friction welds are first discussed. A fatigue crack growth model based on the Paris law for crack propagation and the global and local stress intensity factors for kinked cracks is then adopted to predict the fatigue lives of these spot friction welds. The global stress intensity factors and the local stress intensity factors based on the recent published works for resistance spot welds in lap-shear specimens are used to estimate the local stress intensity factors for kinked cracks with experimentally determined kink angles. The results indicate that the fatigue life predictions based on the Paris law and the local stress intensity factors as functions of the kink length agree well with the experimental results.
Technical Paper

Grade and Gage Sensitivities to Oil-Canning Loads of a Door Assembly Considering Forming Effects

2004-03-08
2004-01-0164
A finite element methodology, based on implicit numerical integration procedure, for simulating oil-canning tests on Door assemblies is presented. The method takes into account nonlinearities due to geometry, material and contact between parts during deformation. The simulation results are compared with experimental observations. Excellent correlation between experimental observations and analytical predictions are obtained in these tests. Armed with the confidence in the methodology, simulations on a door assembly are conducted to study the gage and grade sensitivities of the outer panel. The sensitivity studies are conducted on three different grades of steel for the outer panel. Further studies are conducted to understand the effects of manufacturing (forming operation) on the oil canning behavior of door assembly. Results demonstrate the utility of the method in material selection during pre-program design of automotive structures.
Technical Paper

Honeycomb Specimens Under Combined Compressive and Shear Displacement Conditions

2005-04-11
2005-01-0360
The quasi-static crush behavior of aluminum 5052-H38 honeycomb specimens under non-proportional compression dominant combined loads is investigated by experiments. Compression dominant combined loads and pure compressive loads were applied in different sequences to induce non-proportional combined loads. The experimental results show that the normal crush and shear strengths in combined loading regions and the normal crush strengths in pure compressive loading regions of the non-proportional combined loads are quite consistent with the existing phenomenological yield criterion based on the experimental normal crush and shear strengths under proportional combined loads. The experimental results indicate that the sequence of loading paths for the non-proportional combined loads does not affect the crush strengths of honeycomb specimens.
Technical Paper

Impact of Light-Weight Design on Manufacturing Cost - A Review of BMW i3 and Toyota Corolla Body Components

2016-04-05
2016-01-1339
OEMs are investigating opportunities to reduce vehicle mass, driven by a need to meet upcoming CAFE targets, increase the range and reduce battery size of EVs. A number of lightweight materials including high strength steels, aluminum alloys, plastics and composites are now in production. To facilitate development of corporate R&D and commercialization plans for new materials, it is beneficial to understand the current manufacturing costs for production components, and their impact on piece price at different volumes. This paper investigates design and cost impact of light-weighting with respect to front door and floor assembly of Toyota Corolla and BMW i3. Toyota Corolla has a traditional steel body and is sold in high volumes while BMW i3 has relatively low annual sales and is primarily made of composite, aluminum and plastic parts.
Technical Paper

Influence of Shear Loads on Crush of Honeycomb Materials

2002-03-04
2002-01-0683
We conduct static experiments to investigate the influence of shear stress on the crush behavior of honeycomb materials. The aluminum honeycomb materials selected in this investigation are orthotropic due to their manufacturing processes. A test fixture and honeycomb specimens are designed such that combined compressive and shear loads along the strongest material symmetry axis can be controlled and applied accurately. The experimental results indicate that both the peak and crush strengths under combined compressive and shear loads are lower than those under pure compressive loads. A yield function is suggested for honeycomb materials under the combined loads based on a phenomenological plasticity theory. The microscopic crush mechanism under the combined loads is also investigated. A microscopic crush model based on the experimental observations is developed. The crush model includes the rupture of aluminum cell walls so that the kinematic requirement can be satisfied.
Technical Paper

Laminated Steel Forming Modeling Techniques and Experimental Verifications

2003-03-03
2003-01-0689
Laminated steel sheets sandwiched with a polymer core are increasingly used for automotive applications due to their vibration and sound damping properties. However, it has become a major challenge in finite element modeling of laminated steel structures and forming processes due to the extremely large differences in mechanical properties and in the gauges of the polymer core and the steel skins. In this study, circular cup deep drawing and V-bending experiments using laminated steels were conducted in order to develop a modeling technique for laminate forming processes. The effectiveness of several finite element modeling techniques was investigated using the commercial FEM code LS-Dyna. Furthermore, two production parts were selected to verify the modeling techniques in real world applications.
Technical Paper

Lightweight Magnesium Intensive Body Structure

2006-04-03
2006-01-0523
This paper describes a lightweight magnesium intensive automobile body structure concept developed at DaimlerChrysler to support a high fuel-efficiency vehicle project. This body structure resulted in more than 40% weight reduction over a conventional steel structure while achieving significantly improved structural performance as evaluated through CAE simulations. A business case analysis was conducted and showed promising results. One concept vehicle was built for the purpose of demonstrating concept feasibility. The paper also identifies areas for further development to enable such a vehicle to become a production reality at a later time.
Technical Paper

Material Property Characterization of Foilback Damping Treatments Using Modified ASTM Equations

2003-05-05
2003-01-1585
In the automotive industry, in order to characterize and evaluate damping treatments, it is a common practice to employ Oberst bar tests as specified by ASTM E756 and SAE J1637. The ASTM standard provides equations for sandwiched Oberst bars. These equations allow engineers to extract the properties of the visco-elastic core. For certain type of automotive constrained-layer damping treatments, such as the Aluminum Foilback, it is often convenient and desirable to prepare the Oberst bar samples with production-intent configuration. Unfortunately, these configurations are often asymmetric. Therefore, the composite Oberst bar data cannot be post-processed by employing the ASTM equations. In this study, the ASTM equations for sandwiched bars are modified to accommodate for asymmetric Oberst bar configurations. The finite element method is used to validate the derived equations by performing a “Virtual Oberst Bar test.”
Technical Paper

Modeling and Testing of Spot Welds under Dynamic Impact Loading Conditions

2002-03-04
2002-01-0149
Failure behavior of spot welds is investigated under impact loading conditions. Three different impact speeds were selected to test both HSLA steel and mild steel specimens under combined opening and shear loading conditions. A test fixture was designed and used to obtain the failure loads of spot weld specimens of different thicknesses under a range of combined opening and shear loads with different impact speeds. Accelerometers were installed on the fixtures and the specimens for investigation of the inertia effects. Optical micrographs of the cross sections of failed spot welds were obtained to understand the failure processes in both HSLA steel and mild steel specimens under different combined impact loads. The experimental results indicate that the failure mechanisms of spot welds are very similar for both HSLA steel and mild steel specimens with the same sheet thickness. These micrographs show that the sheet thickness can affect the failure mechanisms.
Technical Paper

Modeling of Strain Rate Effects in Automotive Impact

2003-03-03
2003-01-1383
This paper deals with the effects of various approaches for modeling of strain rate effects for mild and high strength steels (HSS) on impact simulations. The material modeling is discussed in the context of the finite element method (FEM) modeling of progressive crush of energy absorbing automotive components. The characteristics of piecewise linear plasticity strain rate dependent material model are analyzed and various submodels for modeling of impact response of steel structures are investigated. The paper reports on the ranges of strains and strain rates that are calculated in typical FEM models for tube crush and their dependence on the material modeling approaches employed. The models are compared to the experimental results from drop tower tests.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
X