Refine Your Search

Search Results

Viewing 1 of 1
Technical Paper

EGR Flow Control Strategy for a Smaller Capacity Diesel Engine Using a Phase Shifting Chamber

2020-04-14
2020-01-1358
Exhaust gas recirculation (EGR) is an effective strategy to control NOx emissions in diesel engines. EGR reduces NOx through lowering the oxygen concentration in the combustion chamber, as well as through heat absorption. The stringent emission norms have forced diesel engines to further improve thermal efficiency and reduce nitrogen oxides (NOx). Throttle control is adopted in diesel intake system to control the EGR & fresh charge flow and to meet the emissions norms. In three or lesser cylinder. diesel engines, predominantly single and two-cylinder diesel engines, there is a higher possibility of the exhaust gas reaching the intake throttle and Particulate matter getting deposited on the throttle body. This can significantly affect the idling stability and intake restriction in prolonged usage. In idling condition, the clogged throttle body stagnates the fresh charge from entering the cylinder. The work aims at the study of flow pattern for EGR reaching the throttle body.
Technical Paper

Optimization of EGR Mixer to Minimize Thermal Hot Spot on Plastic Duct & Soot Deposition on Throttle Valve Using CFD Simulation

2019-01-09
2019-26-0286
In recent time, with inception of BS VI emission regulation with more focus on fuel economy and emission, many engine parts which were conventionally made from metal are getting replaced with plastic components for reducing weight to attain better fuel economy. EGR is commonly used technique to reduce emissions in diesel engine along with after treatment devices. EGR reduces peak combustion temperature inside the combustion chamber thereby reducing NOx. EGR is bypassed from the exhaust manifold, cooled down in EGR cooler and mixed with intake air at upstream of the intake manifold. Throttle valve is used for controlling the charged air flow to cylinders for different vehicle operating conditions. With compact engine layout EGR mixer are often located near to throttle valve thereby increasing the possibility of soot deposition on throttle valve.
Technical Paper

Split Type Crankcase Design for a Single Cylinder LCV Diesel Engine

2017-01-10
2017-26-0040
Serious efforts have been put in space to focus on lowering the fuel consumption and CO2 discharge to the environment from Automotive Diesel Engines. Though more focus is put on material up gradation approach on weight perspective, it is accompanied by undesirable cost increase and manufacturing complexity. As a part of development of a single cylinder engine for a light commercial vehicle application, a unique approach of integrated split type crankcase design is designed and developed. This design have addressed all the key factors on Weight, Cost and Manufacturing perspectives. The split type crankcase configuration, particularly middle-split configuration, integrates the oil sump, front cover and flywheel housing in a single unit beneficial from the point of view of reducing engine weight and thus reducing the manufacturing costs. This crankcase is also excellent from the serviceability point of view.
X