Refine Your Search

Topic

Search Results

Technical Paper

1D Simulation-Based Methodology for Automotive Grill Opening Area Optimization

2021-09-15
2021-28-0133
This paper discusses the methodology setup for grill opening area prediction at the early development phase of the product development lifecycle, using a commercially available 1D simulation tool- AMESIM. Representative under hood has been modeled using Grill, Condenser, Radiator, intercooler, fan, and engine components. Vehicle velocity is used as an input to derive the airflow passing through the grill and other under-hood components based on ram air coefficient, pressure drop through different components (Grill, Heat exchanger, Fan & Engine). This airflow is used to predict the top tank temperature of the radiator. Derived airflow is correlated with airflow obtained from CFD simulation. A balance has been achieved between cooling drag & fan power consumption at different grill opening areas for target top tank temperature. Top tank temperature has been predicted at two different extreme engine heat rejection operating points.
Technical Paper

A Case Study of Compressor Surge Related Noise on Turbocharged 2.0-L Gasoline Engine

2021-09-22
2021-26-0282
Till recently supercharging was the most accepted technique for boost solution in gasoline engines. Recent advents in turbochargers introduced turbocharging technology into gasoline engines. Turbocharging of gasoline engines has helped in powertrains with higher power density and less overall weight. Along with the advantages in performance, new challenges arise, both in terms of thermal management as well as overall acoustic performance of powertrains. The study focuses mainly on NVH aspects of turbocharging of gasoline engines. Compressor surge is a most common phenomenon in turbochargers. As the operating point on the compressor map moves closer to the surge line, the compressor starts to generate noise. The amplitude and frequency of the noise depends on the proximity of the operating point to the surge line. The severity of noise can be reduced by selecting a turbocharger with enough compressor surge margin.
Technical Paper

A Development of Booming Index of Diesel SUV by using Artificial Neural Network

2012-06-13
2012-01-1542
In today's competitive scenario, understanding mental modal map of individual customer perception plays a major role to create the brand image of vehicle. Among them “comfortable sound” is one of the important criteria for customer satisfaction, especially in case of diesel vehicle, where in-cab sound quality plays a crucial factor. Often customer perception concerning comfort in automotive industry relies on subjective comfort evaluation method. Converting the customer perception into objective measurements and to correlate them is often tough task for NVH engineers. It is because of human sensation behavior differs from persons to person, mental map, geographical location and domain knowledge. In addition acoustic & comfort relevant aspects are often subjectively evaluated based on jury trials conducted on the prototype vehicle and class competitive benchmark vehicles to get the feel & confidence of product for different gateways.
Technical Paper

A Methodology for Multi-Objective Design Optimization (MDO) of Automotive Suspension Systems

2023-04-11
2023-01-0024
Original Equipment Manufacturers (OEMs) should innovate ways to delight customers by creating affordable products with improved drive experience and occupant comfort. Vehicle refinement is an important initiative that is often take-up by the project teams to ensure that the product meets the customer’s expectations. A few important aspects of vehicle refinement include improving the Noise Vibration Harshness (NVH), ride and handling performance pertaining to the Functional Image (FI) of the product. Optimizing the suspension design variables to meet both ride and handling performance is often challenging as improving the ride will have a deteriorating effect on handling and vice-versa. The present work involves Multi-Objective Design Optimization (MDO) of the suspension system of an automotive Sports Utility Vehicle (SUV) platform considering both ride and handling requirements, simultaneously.
Technical Paper

A Real-World Range Testing and Analysis Methodology Development for Battery Electric Vehicles

2024-01-16
2024-26-0124
Range anxiety is one of the major factors to be dealt with for increasing penetration of EVs in current Automotive market. The major reasons for range anxiety for customers are sparse charging infrastructure availability, limited range of Electric vehicles and range uncertainty due to diverse real-world usage conditions. The uncertainty in real world range can be reduced by increasing the correlation between the testing condition during vehicle development and real-world customer usage condition. This paper illustrates a more accurate test methodology development to derive the real-world range in electric vehicles with experimental validation and system level analysis. A test matrix is developed considering several variables influencing vehicle range like different routes, drive modes, Regeneration levels, customer drive behavior, time of drive, locations, ambient conditions etc.
Technical Paper

A Systematic Approach for Design of Engine Crankcase Through Stress Optimization

2010-04-12
2010-01-0500
The cylinder block for the power train has always been a classic example of concurrent engineering in which disciplines like NVH, Durability, thermal management and lubrication system layout contribute interactively for concept design. Since the concept design is based on engineering judgment and is an estimated design, the design iterations for optimization are inevitable. This paper aims at outlining a systematic approach for design of crankcase for fatigue which would eliminate design iterations for durability. This allows a larger scope for design improvement at the concept stage as the design specifications are not matured at this stage. A process of stress optimization is adopted which gives accurate dimensional input to design. The approach is illustrated with a case study where an existing crankcase was optimized for fatigue and significant weight reduction was achieved.
Technical Paper

A Universal Steering Grommet Design Approach to Enhance the Passenger Cabin NVH Performance

2024-01-16
2024-26-0202
As a car OEM, we continuously strive to set the bar for competitors with every product. Consumer travel experiences are enhanced by increasing passenger cabin silence. There is only one steering system opening in the firewall panel, which is used for allowing intermediate shaft's fitment on the pinion shaft of the steering gear. The steering grommet is the sole component that covers the firewall cut-out without disrupting steering operations, which has a substantial impact on the NVH performance of the vehicle. It is typically used in cars to eliminate engine noise and dust entering to passenger compartment. The part is assembled inside the vehicle where the steering intermediate shaft passing through BIW firewall panel. We use a bearing, plastic bush, or direct rubber interference design in the steering grommet to accommodate the rotational input the driver provides to turn the automobile.
Technical Paper

Advanced Modelling of Frequency Dependent Damper Using Machine Learning Approach for Accurate Prediction of Ride and Handling Performances

2023-04-11
2023-01-0672
Accurate ride and handling prediction is an important requirement in today's automobile industry. To achieve the same, it is imperative to have a good estimation of damper model. Conventional methods used for modelling complex vehicle components (like bushings and dampers) are often inadequate to represent behaviour over wide frequency ranges and/or different amplitudes. This is difficult in the part of OEMs to model the physics-based model as the damper’s geometry, material and characteristics property is proprietary to part manufacturer. This is also usually difficult to obtain as a typical data acquisition exercise takes lots of time, cost, and effort. This paper aims to address this problem by predicting the damper force accurately at different velocity/ frequency and amplitude of measured data using Artificial Neural Networks (ANN).
Technical Paper

An Evaluation of Gear-Shift Impulse of Two Different Architectures of a High-Torque Capacity Manual Inline Transmission

2023-11-10
2023-28-0119
Manual transmission (MT) is still the most preferred solution for emerging markets due to the lower cost of ownership and maintenance coupled with a higher transmission efficiency. In this regard, continuous improvement of the transmission shift quality is quite essential to meet the growing customer expectations. In the present work, a detailed evaluation of the gear-shift impulse (experienced at the gear-shift knob) is conducted between two different architectures of a manual, high-torque (450 Nm input torque) inline transmission meant for a sports utility vehicle (SUV). The conventional manual inline transmission architecture comprises a common gear pair at the input of the transmission. While this input reduction architecture is the most widely used architecture, having the common gear pair at the output of the transmission is also another option. The synchronizers of the manual transmission need to match the speed of the rotating components just before the gear-shifting event.
Technical Paper

An Extensive Optimization Methodology to Validate the Exhaust After-Treatment System of a BS VI Compliant Modern Diesel Engine

2020-09-25
2020-28-0483
The Indian automotive industry has migrated from BS IV (Bharat stage IV) to BS VI (Bharat Stage VI) emission norms from 1st April 2020. This two-step migration of the emission regulations from BS IV to BS VI demands significant engineering efforts to design and integrate highly complex exhaust after-treatment system (EATS). In the present work, the methodology used to evaluate the EATS of a high power-density 1.5-liter diesel engine is discussed in detail. The EATS assembly of the engine consists of a diesel oxidation catalyst (DOC), a diesel particulate filter with selective catalytic reduction coating (sDPF), urea dosing module and urea mixer. Typically, all these components that are needed for emission control are integrated into a single canning of shell thickness ~1.5mm. Moreover, the complete EATS is directly mounted onto the engine with suitable mounting brackets on the cylinder block and cylinder head.
Technical Paper

Approach to Estimate Life of Li-Ion Power Battery for Mild Hybrid Application in India

2015-04-14
2015-01-0249
Development of Hybrid Electric Vehicles (HEVs) and Battery Electric Vehicles (BEVs) is gaining traction across all geographies to help meet increasing fuel economy regulations and as a pathway to offset concerns due to climate change. But HEVs and EVs have so far been a nascent market for India. These technologies have primarily shifted towards Lithium-ion batteries (LIB) for energy storage due to its high energy and power densities. In order to make actual business sense of these technologies, of which, battery is a major cost driver, it is necessary for these batteries to provide similar performance and life expectancy across the operating boundary of the vehicles, as well as provide the requirements at a competitive cost. In other words, the LIBs have to sustain the normal life cycle requirements and withstand wide range of storage temperatures that the conventional gasoline/diesel vehicles have been good at and still ensure good life.
Technical Paper

Automated Test Setup for Edge Compute Connectivity Devices by Recreating Live Connected Ecosystem on the Bench

2021-09-22
2021-26-0498
Connected vehicle services have come a long way from the early days of telematics, both in terms of breadth of the class of vehicles, and in terms of richness or complexity of the data being handled for Enhancing Customer Experience. The Connectivity Control unit (CCU) is a gateway device for the vehicle to the outside world. While it enables transmission of vehicle data along with the location information. CCU is currently validated in the vehicle to check functionality. It has cost, time drawbacks and prevents effective testing of many scenarios. Bench level validation will not be able to complete functionality validation. There is subset of validation tools or semi-automated solutions are available in the market, but they are not fully functional, and critically cannot perform end to end validation. Automated Test setup for CCU in lab simulating the entire field data of the vehicle with modifiable characteristics.
Technical Paper

Case Study: An Accelerated Methodology for Simulating Thermal Stress in Automotive Headlamps

2017-01-10
2017-26-0322
In any industry, early detection and mitigation of a failure in component is vital for feasible design changes or development iterations or saving money. So it becomes pivotal to capture the failure mode in an accelerated way. This theory poses many challenges in devising the methodology to validate the failure mode. In real world, vehicle head lamp is exposed to all possible kinds of harsh environments such as variable daily ambient, rain, dust and engine compartment temperature …etc. This brings rapid thermal stress onto headlamp resulting into warpage cracks. At vehicle level on particular model, this failure is typically observed after 20,000-25,000 kms in a span of 3-4 months of running. Any corrective action to revalidate the design change or improvement will need similar timelines in regular way to test, which is quite high in product development cycle.
Technical Paper

Customer Usage Profile based Luggage Compartment Development at Concept Phase

2021-10-01
2021-28-0153
The SAE J1100 based standard cargo volume index methods and predefined luggage objects are very specific to United States population. The European luggage volume calculation and standard luggage calculations are primarily based on DIN and ISO standards. Luggage volume declaration by manufacturers are based on any of these methods. The calculations are complicated and there is a possibility of declaring different values for similar luggage compartments. The major purchase decision of vehicle is based on its luggage capacity and current methods are very limited to make an intelligent decision by a customer. Market specific customer usage patterns for luggage requirements and protecting them in vehicle architecture upfront in concept stage is important to retain the market position and buying preference of customers. The usage patterns is collected from customer clinics and marketing inputs.
Journal Article

Design and Development of Electro Hydraulics Hitch Control for Agricultural Tractor

2017-01-10
2017-26-0227
Tractor hitch control system is used for attaching and operating various Agricultural Implements and for operating tipping trailer. The system has also got provision to attach additional Aux valves for rear and front mounted attachments. The rear mounted implements are coupled to the tractor using Three Point Linkage (3PL) System. The hitch hydraulics system consists of hydraulic pump, filter, piping’s, fittings and hydraulics lift unit. Hydraulics lift unit consists of a proportional control valve, cylinder, piston and power linkages. Conventional control valve is hydro mechanical part operated by mechanical linkages. The control valve and linkages plays major role in performance of hydraulics system. Hydraulics is required to operate in extreme conditions of soils such as very soft like sand to very hard like black cotton sand.
Technical Paper

Design for Adaptive Rear Floor Carpet for Changing Shapes and Complex Architecture

2019-10-11
2019-28-0004
With increasing road traffic and pollution, it becomes responsibility for all OEM to increase fuel efficiency and reduce carbon footprint. Most effective way to do so is to reduce weight of the vehicle and more use of ecofriendly recyclable material. With this objective we have come up with Light weight, cost effective sustainable design solution for Injection moulded RQT (Rear quarter trim). It is an interior plastic component mounted in the III row of the vehicle. This is required to ensure inside enhanced aesthetic look of the vehicle and comfort for 3rd row passengers. Conventionally RQT of vehicle with 3rd row seating is made using plastic material (PP TD 20). With the use of plastic moulded RQT there is a significant weight addition of around 6 kg per vehicle along with reduced cabin space, huge investment and development time impact.
Technical Paper

Development of Sensor Based Rotavator Unit For Display of Operational Parameters on Various Soil Conditions

2021-09-22
2021-26-0091
Rotavator is an active tillage implement for breaking the Soil and for the preparation of seed bed for cultivation. The Farmers are currently facing problem due to usage of sub optimal speed of Rotavator which results in more fuel consumption, takes more time for completion of operation. Also, the Current Rental models work on Tractor + Implement as rental combination and customer not able to rent Rotavator as a standalone implement due to non-availability of Tracking information such as hours of utilization on Rotavator. Farmers not able to maintain the service periodicity, if oil change not done in prescribed duration then it may result in improper maintenance and breakdown of the Rotavator. To overcome these problems a smart Rotavator developed consists of an electronic unit fitted on the Rotavator shaft to measure the speed of the shaft rotation and in turn convert to Rotavator speed and also able to convert into Hours of usage based on the starting and stopping of the rotavator.
Technical Paper

Development of a Fuel Efficiency Enhancement Module for Tractors

2024-01-16
2024-26-0064
In farm tractors, the available drawbar power, and Power Take-Off (PTO) power are generally lower than the engine power due to parasitic losses. These losses are caused by engine-driven auxiliary loads such as cooling fans, hydraulic pumps for power steering, alternators, etc. Minimizing these parasitic losses can increase the available drawbar power and PTO power, resulting in direct fuel savings by reducing fuel consumption. The continuous increase in fuel costs and the environmental impact of emitted gases from burned fuel into the atmosphere have necessitated the replacement of hydraulic power steering and mechanical fans with Electric Power Steering (EPS) and electric fans, respectively, to improve efficiency. The existing battery has been replaced with a higher capacity battery to provide power to the electric fan, electric power steering, and other electrical components.
Technical Paper

Diagnosis and Elimination of Disc Brake Groan in a Utility Vehicle

2014-04-01
2014-01-0043
Brake groan noise is resolved without any major change in the design of brake system and vehicle sub-system components in the development phase of a utility vehicle. The groan noise is observed during the end of the stopping of the vehicle under moderate braking. The concerned NVH issue is perceived as unacceptable noise in the passenger compartment. Groan induced vibration is subjectively felt on steering and seat frame. A typical process is established to successfully reproduce the groan which helped in precisely evaluating the effect of modifications proposed. The temperature range of the disc which has the highest probability to produce the groan noise is found out experimentally. The transfer path analysis is carried out to find the path contributions from suspension. Acoustic transfer functions from considered paths are measured with the suspension removed from vehicle.
Technical Paper

Driveline Boom Noise Reduction through Simplified FEM Approach

2017-01-10
2017-26-0215
In today's competitive automobile marketplace with reduced vehicle development time and fewer prototypes/tests, CAE is playing very crucial role in vehicle development. Automobile environment demands ever improving levels of vehicle refinement. Performance and refinement are the key factors which can influence the market acceptance of vehicle. Driveline is one of the key systems whose refinement plays critical role in improved customer satisfaction. Because of the virtue of the driveline functionality, driveline induced noise and vibration are the most common issues in the AWD vehicle development programs. Refinement of the drive line needs complicated nonlinear full vehicle CAE MBD models for the evaluation of driveline induced noise and vibration responses at different operating conditions [1]. In this paper a simplified approach is adapted for solving the Noise & Vibration issue which has been identified at the prototype testing level of an AWD vehicle development.
X