Refine Your Search

Topic

Author

Search Results

Technical Paper

1D Simulation-Based Methodology for Automotive Grill Opening Area Optimization

2021-09-15
2021-28-0133
This paper discusses the methodology setup for grill opening area prediction at the early development phase of the product development lifecycle, using a commercially available 1D simulation tool- AMESIM. Representative under hood has been modeled using Grill, Condenser, Radiator, intercooler, fan, and engine components. Vehicle velocity is used as an input to derive the airflow passing through the grill and other under-hood components based on ram air coefficient, pressure drop through different components (Grill, Heat exchanger, Fan & Engine). This airflow is used to predict the top tank temperature of the radiator. Derived airflow is correlated with airflow obtained from CFD simulation. A balance has been achieved between cooling drag & fan power consumption at different grill opening areas for target top tank temperature. Top tank temperature has been predicted at two different extreme engine heat rejection operating points.
Technical Paper

A Methodology for Multi-Objective Design Optimization (MDO) of Automotive Suspension Systems

2023-04-11
2023-01-0024
Original Equipment Manufacturers (OEMs) should innovate ways to delight customers by creating affordable products with improved drive experience and occupant comfort. Vehicle refinement is an important initiative that is often take-up by the project teams to ensure that the product meets the customer’s expectations. A few important aspects of vehicle refinement include improving the Noise Vibration Harshness (NVH), ride and handling performance pertaining to the Functional Image (FI) of the product. Optimizing the suspension design variables to meet both ride and handling performance is often challenging as improving the ride will have a deteriorating effect on handling and vice-versa. The present work involves Multi-Objective Design Optimization (MDO) of the suspension system of an automotive Sports Utility Vehicle (SUV) platform considering both ride and handling requirements, simultaneously.
Technical Paper

A Methodology for the Design Optimization of Fuel Control Unit Bracket and Fuel Pump Housing Integration and Achieving the System Targets

2022-03-29
2022-01-0636
The increasing demand for higher specific power and the need for weight reduction and decrease of emissions have become the driving factors of product development in the automotive market today. Substitution of high-density materials and more precise adjustment of material parameters help in significant weight decrease, but it is accompanied by undesirable cost increase and manufacturing complexity. One of the approaches to optimize the design is through the process of integration which involves integrating the functional elements of two or more components into one and achieving a reduction in weight and cost without impacting required performance. This paper explains a similar approach followed as a part of the Design and Development of 1.5 L, 3 Cylinder CRDI Diesel Engine for a new vehicle platform, developed for automotive passenger car application.
Technical Paper

A Methodology to Validate the V-band Clamp Used in High-Temperature Sealing Joint of a Light-Duty Diesel Engine

2022-03-29
2022-01-0637
The stringent emission regulations demand highly complex after-treatment systems. The packaging and functional requirements of the after-treatment system demand very close coupling of the diesel oxidation catalyst (DOC) with the turbocharger outlet. The sealing effectiveness between the turbocharger and DOC is ensured by the V-band grooved clamp along with the suitable gasket. This V-band grooved clamp is widely used in diesel engines due to its ease of assembly and low cost. Since the V-band grooved clamp is subjected to a very high temperature, vibration, thermal shock, a robust and holistic validation is required to ensure the functional and safety requirements. Despite its wide range of applications, the testing and validation methodologies required to effectively validate the strength and other aspects of the clamp are not fully defined. In the present work, the authors discuss the various design validation methods involved during the development of the V-band grooved clamp.
Technical Paper

A Particle Swarm Optimization Tool for Decoupling Automotive Powertrain Torque Roll Axis

2014-04-01
2014-01-1687
A typical powertrain mount design process starts with performing the system calculations to determine optimum mount parameters, viz. position, orientation and stiffness values to meet the desired NVH targets. Therefore, a 6 degrees of freedom lumped parameter system of powertrain and mounts is modelled in Matlab®. The approach is to decouple the torque roll axis mode from the remaining five rigid body modes so that the response to the torque pulses is predominantly ‘oscillations about Torque Roll Axis’. This is achieved by optimizing the above mount parameters within specified constraints so that ‘Rotation about the torque roll axis’ is one of the natural modes of vibration. The tool developed here uses ‘Particle Swarm Optimization(PSO) algorithm’ because of its ease of implementation and better convergence to the solution. The algorithm is programmed in TK solver®.
Technical Paper

A Real-World Range Testing and Analysis Methodology Development for Battery Electric Vehicles

2024-01-16
2024-26-0124
Range anxiety is one of the major factors to be dealt with for increasing penetration of EVs in current Automotive market. The major reasons for range anxiety for customers are sparse charging infrastructure availability, limited range of Electric vehicles and range uncertainty due to diverse real-world usage conditions. The uncertainty in real world range can be reduced by increasing the correlation between the testing condition during vehicle development and real-world customer usage condition. This paper illustrates a more accurate test methodology development to derive the real-world range in electric vehicles with experimental validation and system level analysis. A test matrix is developed considering several variables influencing vehicle range like different routes, drive modes, Regeneration levels, customer drive behavior, time of drive, locations, ambient conditions etc.
Technical Paper

A Secondary De-Aeration Circuit for an Engine Cooling System with Atmospheric Recovery Bottle to Improve De-Aeration

2014-09-30
2014-01-2342
In any engine cooling system, de-aeration capability of the system plays a very critical role to avoid over heating of an engine. In general, with recovery bottle engine cooling system there is one vent hose from radiator pressure cap to the recovery bottle and coolant in the bottle is exposed to atmospheric pressure. From this vent hose air bubbles will move to recovery bottle from the engine and radiator when pressure in the system exceeds pressure cap setting. With this arrangement, de-aeration from the engine will happen when thermostat opens only and till that time air bubbles will be in the engine only and in this time there will be chance of overheating at some critical conditions because of air pockets in to the engine water jacket and the entrained air in the cooling circuit. Also, secondly 100 % initial filling cannot be achieved.
Technical Paper

A Study on Door Clips and Their Influence on BSR Performance

2019-06-05
2019-01-1468
Squeak and rattle concerns account for approximately 10% of overall vehicle Things Gone Wrong (TGW) and are major quality concern for automotive OEM’s. Objectionable door noises are one of the top 10 IQS concerns under any OEM nameplate. Door trim significantly contributes to overall BSR quality perception. Door trim is mounted on door in white using small plastic clips with variable properties that can significantly influence BSR performance. In this paper, the performance of various door clips is evaluated through objective parameters like interface dynamic stiffness and system damping. The methodology involves a simple dynamic system for the evaluation of the performance of a clip design. Transmissibility is calculated from the dynamic response of a mass supported by clip. Parameters such as interface stiffness and system damping are extracted for each clip design. Variation of inner panel thickness is also considered when comparing clip performance.
Technical Paper

A Systematic Approach for Design of Engine Crankcase Through Stress Optimization

2010-04-12
2010-01-0500
The cylinder block for the power train has always been a classic example of concurrent engineering in which disciplines like NVH, Durability, thermal management and lubrication system layout contribute interactively for concept design. Since the concept design is based on engineering judgment and is an estimated design, the design iterations for optimization are inevitable. This paper aims at outlining a systematic approach for design of crankcase for fatigue which would eliminate design iterations for durability. This allows a larger scope for design improvement at the concept stage as the design specifications are not matured at this stage. A process of stress optimization is adopted which gives accurate dimensional input to design. The approach is illustrated with a case study where an existing crankcase was optimized for fatigue and significant weight reduction was achieved.
Technical Paper

A Systematic Approach for Weight Reduction of BIW Panels through Optimization

2010-04-12
2010-01-0389
This paper describes application of Design of Experiments (DOE) technique and optimization for mass reduction of a Sports utility vehicle (SUV) body in white (BIW). Thickness of the body panels is taken as design variable for the study. The BIW global torsion, bending and front end modes are key indicators of the stiffness and mass of the structure. By considering the global modes the structural strength of the vehicle also gets accounted, since the vehicle is subjected to bending and twisting moments during proving ground test. The DOE is setup in a virtual environment and the results for different configurations are obtained through simulations. The results obtained from the DOE exercise are used to check the sensitivity of the panels. The panels are selected for mass reduction based on the analysis of the results. This final configuration is further evaluated for determining the stiffness and strength of the BIW.
Technical Paper

A Unique Approach to Optimize the Gear-Shift Map of a Compact SUV to Improve FE and Performance

2020-04-14
2020-01-0969
Automated manual transmission (AMT) is often preferred by car manufacturers as entry-level automation technology. The AMT technology can provide the comfort of an automatic gearbox at a reasonable cost impact over manual transmission (MT). This paper explains the unique approach to define the gear-shift map of a compact sports utility vehicle (SUV) considering the unique requirements of the Indian market. The real-world measurements revealed that an aggressive shift pattern with delayed upshifts and quick downshifts can deliver good low-end drivability and performance while compromising on fuel economy (FE). Moreover, the chassis dyno measurements in the modified Indian drive cycle (MIDC) indicated lower FE values. On the other hand, a shift pattern with early upshifts and delayed downshifts could help in achieving a better FE while compromising on drivability and performance. Hence, a unique approach is used to derive the most optimal gear-shift map for each operating gear.
Technical Paper

A Unique Methodology to Evaluate the Structural Robustness of a Dual-Mass Flywheel under Real-World Usage Conditions

2020-09-25
2020-28-0475
Dual mass flywheel (DMF) is an excellent solution to improve the noise, vibration and harshness (NVH) characteristic of any vehicle by isolating the driveline from the engine torsional vibrations. For the same reason, DMFs are widely used in high power-density diesel and gasoline engines. However, the real-world usage conditions pose a lot of challenges to the structural robustness of the DMF. In the present work, a new methodology is developed to evaluate the robustness of a DMF fitted in a compact sports utility vehicle (SUV) with rear-wheel drive architecture. The abuse conditions (mis-gear, sudden braking, etc) in the real-world usage could lead to a sudden engine stall leading to an abnormally high angular deceleration of the driveline components. The higher rate of deceleration coupled with the higher rotational moment of inertia of the systems might end up in introducing a significantly high impact torque on the DMF.
Technical Paper

Accurate Steering System Modelling for Vehicle Handling and Steering Performance Prediction Using CAE

2021-09-22
2021-26-0403
The automobile industry strives to develop high-quality vehicles quickly that fulfill the buyer’s needs and stand out within the competition. Full utilization of simulation and Computer-Aided Engineering (CAE) tools can empower quick assessment of different vehicle concepts and setups without building physical models. Vehicle execution assessment is critical in the vehicle development process, requiring exact vehicle steering system models. The effect of steering system stiffness is vital for vehicle handling, stability, and steering performance studies. The overall steering stiffness is usually not modeled accurately. Usually, torsion bar stiffness alone is considered in the modeling. The modeling of overall steering stiffness along with torsion bar stiffness is studied in this paper. Another major contributing factor to steering performance is steering friction. The steering friction is also often not considered properly.
Technical Paper

Acoustic Analysis of a Tractor Muffler

2017-06-05
2017-01-1791
Parametric model of a production hybrid (made up of reactive and dissipative elements) muffler for tractor engine is developed to compute the acoustic Transmission Loss (TL). The objective is to simplify complex muffler acoustic simulations without any loss of accuracy, robustness and usability so that it is accessible to all product development engineers and designers. The parametric model is a 3D Finite Element Method (FEM) based built in COMSOL model builder which is then converted into a user-friendly application (App) using COMSOL App builder. The uniqueness of the App lies in its ability to handle not only wide range of parametric variations but also variations in the physics and boundary conditions. This enables designers to explore various design options in the early design phase without the need to have deep expertise in a specific simulation tool nor in numerical acoustic modeling.
Technical Paper

Advanced Mathematical Modelling for Glass Surface Optimization with PSO

2019-10-11
2019-28-0104
In automotive door engineering, fitting the side door glass surface from styling into the cylinder or torus is the basic requirement. Optimization is required to do this, which requires a solver which could be efficacious for best surface fitting. This paper propounds a methodology which could be used for fitting a side door glass surface from styling into the cylinder or torus. The method will significantly help in developing the required surface and can successfully eliminate the cumbersome manual calibrations. The mathematical model mentioned is a novel approach based on “Particle Swarm Optimization” (“PSO” will be used to represent in the paper) towards surface optimization technique. VB script is used to make it applicable in CATIA but could be easily applied in any other programming language like python, java etc. Usually the surface fitting problems deals with the initial guess of the required surface and then its further optimization.
Technical Paper

Aerodynamic Drag Reduction of an Intercity Bus through Surface Modifications - A Numerical Simulation

2019-10-11
2019-28-0045
The maximum power produced by the Engine is utilized in overcoming the Aerodynamic resistance while the remaining has been used to overcome rolling and climbing resistance. Increasing emission and performance demands paves way for advanced technologies to improve fuel efficiency. One such way of increasing the fuel efficiency is to reduce the aerodynamic drag of the vehicle. Buses emerged as the common choice of transport for people in India. By improving the aerodynamic drag of the Buses, the diesel consumption of a vehicle can be reduced by nearly about 10% without any upgradation of the existing engine. Though 60 to 70 % of pressure loads act on the frontal surface area of the buses, the most common techniques of reducing the drag in buses includes streamlining of the surfaces, minimizing underbody losses, reduced frontal area, pressure difference between the front & rear area and minimizing of flow separation & wake regions.
Technical Paper

Alternate Manufacturing Process for Automotive Input Shafts

2017-10-13
2017-01-5013
The input shafts are conventionally developed through Hot forging route. Considering upcoming new technologies the same part was developed through cold forging route which resulting in better Mechanical properties than existing hot forging process. It has added benefit of cost as well as environmental friendly. Generally, the part like Input shaft which having gear teeth, splines etc., will be manufactured through Hot forging process due to degree of deformation, availability of press capacity, diameter variations etc., This process consumes more energy in terms of electricity for heating the bar and also creates pollution to the atmosphere. Automotive input shaft design modified to accommodate cold forging process route to develop the shaft with press capacity of 2500T which gives considerable benefit in terms of mechanical and metallurgical Properties, close dimensional tolerances, less machining time, higher material yield when compared to hot forging and metal cutting operation.
Technical Paper

An Investigation into the Disruption of Circadian Rhythms using Blue Light for Automotive Applications

2015-04-14
2015-01-1706
Melatonin, otherwise popularly known as the “sleep hormone” is known to govern the human circadian rhythms. Current studies indicate that the generation of melatonin is impacted by the ambient light. The natural sleep inducing behavior during night and in darkness, is also due to the same phenomenon. Studies have shown that light of particular wavelengths in the visible spectrum have a higher effect on the amount of melatonin secreted by the human body. Blue light in the wavelengths of around 468 nm is known to inhibit the melatonin secretion, the most. This branch of science known as photobiology is in its nascent stage and is a matter of research pursued by neurologists, endocrinologists and other lighting researchers. Photobiology has several potential applications in the automotive industry, the principal one being driver drowsiness prevention.
Technical Paper

Analytical Design and Development for Automobile Powertrain Mounts Using Low Fidelity Calculators

2016-02-01
2016-28-0185
The excitation to a vehicle is from two sources, road excitation and powertrain excitation. Vehicle Suspension is designed to isolate the road excitation coming to passenger cabin. Powertrain mounts play a vital role in isolating the engine excitation. The current study focuses on developing an analytical approach using Low-Fidelity computer programs to design the Powertrain Mount layout and stiffness during the initial stage of product development. Three programs have been developed as a part of this study that satisfy the packaging needs, NVH requirements and static load bearing requirements. The applications are capable of providing the Kinetic Energy Distribution and Static Analysis (Powertrain Enveloping and Mount Durability) for 3-point and 4-point mounting systems and the ideal mount positions and stiffness for 3-point mounting systems.
Technical Paper

Automated Test Setup for Edge Compute Connectivity Devices by Recreating Live Connected Ecosystem on the Bench

2021-09-22
2021-26-0498
Connected vehicle services have come a long way from the early days of telematics, both in terms of breadth of the class of vehicles, and in terms of richness or complexity of the data being handled for Enhancing Customer Experience. The Connectivity Control unit (CCU) is a gateway device for the vehicle to the outside world. While it enables transmission of vehicle data along with the location information. CCU is currently validated in the vehicle to check functionality. It has cost, time drawbacks and prevents effective testing of many scenarios. Bench level validation will not be able to complete functionality validation. There is subset of validation tools or semi-automated solutions are available in the market, but they are not fully functional, and critically cannot perform end to end validation. Automated Test setup for CCU in lab simulating the entire field data of the vehicle with modifiable characteristics.
X