Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comprehensive Methodology to Design and Develop Suspension System Bolted Joints using Vehicle Test Loads and CAE Simulation

2023-04-11
2023-01-0608
The bolted joints in suspension systems are subjected to severe external service loads during vehicle operation. To prevent the loaded joint from loosening and allowing it to retain its potential energy stored during assembly, a holistic design approach is needed. This paper explains the methodology to design and optimize bolted joints for the suspension systems of a modern 7-seater sports utility vehicle.
Technical Paper

A Methodology for Multi-Objective Design Optimization (MDO) of Automotive Suspension Systems

2023-04-11
2023-01-0024
Original Equipment Manufacturers (OEMs) should innovate ways to delight customers by creating affordable products with improved drive experience and occupant comfort. Vehicle refinement is an important initiative that is often take-up by the project teams to ensure that the product meets the customer’s expectations. A few important aspects of vehicle refinement include improving the Noise Vibration Harshness (NVH), ride and handling performance pertaining to the Functional Image (FI) of the product. Optimizing the suspension design variables to meet both ride and handling performance is often challenging as improving the ride will have a deteriorating effect on handling and vice-versa. The present work involves Multi-Objective Design Optimization (MDO) of the suspension system of an automotive Sports Utility Vehicle (SUV) platform considering both ride and handling requirements, simultaneously.
Technical Paper

A Methodology of Optimizing Steering Geometry for Minimizing Steering Errors

2024-01-16
2024-26-0062
The focus on driver and occupant safety as well as comfort is increasing rapidly while designing commercial vehicles in India. Improvements in the road network have enhanced road transport for commercial vehicles. Apart from the cost of operation and fuel economy, the commercial vehicles must deliver goods within stipulated time. These factors resulted in higher speed of operation for commercial vehicles. The design should not compromise the safety of the vehicle at these higher speeds of operation. The vehicle should obey the driver’s intended direction at all speeds and the response of the vehicle to driver input must be predictable without much larger surprises which can lead to accidents. The commercial vehicles are designed with rigid axle and RCB type steering system. This suspension and steering design combination introduce steering errors when vehicle travel over bump, braked and while cornering.
Technical Paper

A Universal Steering Grommet Design Approach to Enhance the Passenger Cabin NVH Performance

2024-01-16
2024-26-0202
As a car OEM, we continuously strive to set the bar for competitors with every product. Consumer travel experiences are enhanced by increasing passenger cabin silence. There is only one steering system opening in the firewall panel, which is used for allowing intermediate shaft's fitment on the pinion shaft of the steering gear. The steering grommet is the sole component that covers the firewall cut-out without disrupting steering operations, which has a substantial impact on the NVH performance of the vehicle. It is typically used in cars to eliminate engine noise and dust entering to passenger compartment. The part is assembled inside the vehicle where the steering intermediate shaft passing through BIW firewall panel. We use a bearing, plastic bush, or direct rubber interference design in the steering grommet to accommodate the rotational input the driver provides to turn the automobile.
Technical Paper

Accurate Steering System Modelling for Vehicle Handling and Steering Performance Prediction Using CAE

2021-09-22
2021-26-0403
The automobile industry strives to develop high-quality vehicles quickly that fulfill the buyer’s needs and stand out within the competition. Full utilization of simulation and Computer-Aided Engineering (CAE) tools can empower quick assessment of different vehicle concepts and setups without building physical models. Vehicle execution assessment is critical in the vehicle development process, requiring exact vehicle steering system models. The effect of steering system stiffness is vital for vehicle handling, stability, and steering performance studies. The overall steering stiffness is usually not modeled accurately. Usually, torsion bar stiffness alone is considered in the modeling. The modeling of overall steering stiffness along with torsion bar stiffness is studied in this paper. Another major contributing factor to steering performance is steering friction. The steering friction is also often not considered properly.
Technical Paper

Advanced Modelling of Frequency Dependent Damper Using Machine Learning Approach for Accurate Prediction of Ride and Handling Performances

2023-04-11
2023-01-0672
Accurate ride and handling prediction is an important requirement in today's automobile industry. To achieve the same, it is imperative to have a good estimation of damper model. Conventional methods used for modelling complex vehicle components (like bushings and dampers) are often inadequate to represent behaviour over wide frequency ranges and/or different amplitudes. This is difficult in the part of OEMs to model the physics-based model as the damper’s geometry, material and characteristics property is proprietary to part manufacturer. This is also usually difficult to obtain as a typical data acquisition exercise takes lots of time, cost, and effort. This paper aims to address this problem by predicting the damper force accurately at different velocity/ frequency and amplitude of measured data using Artificial Neural Networks (ANN).
Technical Paper

An Evaluation of Gear-Shift Impulse of Two Different Architectures of a High-Torque Capacity Manual Inline Transmission

2023-11-10
2023-28-0119
Manual transmission (MT) is still the most preferred solution for emerging markets due to the lower cost of ownership and maintenance coupled with a higher transmission efficiency. In this regard, continuous improvement of the transmission shift quality is quite essential to meet the growing customer expectations. In the present work, a detailed evaluation of the gear-shift impulse (experienced at the gear-shift knob) is conducted between two different architectures of a manual, high-torque (450 Nm input torque) inline transmission meant for a sports utility vehicle (SUV). The conventional manual inline transmission architecture comprises a common gear pair at the input of the transmission. While this input reduction architecture is the most widely used architecture, having the common gear pair at the output of the transmission is also another option. The synchronizers of the manual transmission need to match the speed of the rotating components just before the gear-shifting event.
Technical Paper

Analysis and Reduction of Abnormal Suspension Noise in Sports Utility Vehicle

2024-01-16
2024-26-0217
This paper focuses on reducing abnormal noise originating from suspension when driving on rough road at the speed of 20 kmph. The test vehicle is a front wheel driven monocoque SUV powered by four cylinder engine. Cabin noise levels are higher between 100 to 800 Hz when driven on rough road at 20 kmph. Vibration levels are measured on front and rear suspension components, front and rear subframe, subframe connections on body to identify the noise source locations. Since the noise levels are dominant only in certain rough patches at very narrow band of time, wavelet analysis is used for identification of frequency at which the problem exist. Based on wavelet analysis, it is identified that the vibration levels are dominant on front lower control arm (LCA). The dynamic stiffness of LCA bushes is reduced by ~ 40% to improve the isolator performance which reduced the noise levels by ~ 9 dB (A) at the problematic frequency band.
Technical Paper

C-Shaped Synchronizer Spring-theoretical Analysis and Validation

2012-09-24
2012-01-2002
This paper presents the analysis and experimental validation of c-spring and its stiffness properties in the gear shift synchronizer system. A synchronizer assembly for a transmission comprises of a synchronizer hub carried by a torque delivery shaft and a cone clutch member carried by a gear and a synchronizer blocking ring. The gear shift sleeve is meshing over the teeth of the clutch hub. The c-spring is positioned in the inner circumference of the rim position of the clutch hub and strut keys will be positioned at the slots on the clutch hub, which are usually 120 degree apart. As the sleeve moves while gear shifting, it pushes down the strut keys which compress the C-spring radially inward; this gives the strut load. The strut keys, which are pushed down by the sleeve, will apply force on the c-spring from radial directions. Since the c-spring is in the shape of an arc it is assumed as a curved beam for the analysis.
Technical Paper

Characterization and Durability of Mold-In-Color Engineering Plastics

2019-11-21
2019-28-2542
Plastics are prone to photo oxidative and thermal oxidative degradation under usage conditions due to their chemical nature. From sustainability and cost standpoint, there is an increasing focus on Mold-In-Color (MIC) plastic materials. Simultaneously customer’s expectations on the perceived quality of these MIC parts has been increasing with attractive color and glossy appearance. A study was conducted to analyze the product quality and durability aspects over a prolonged exposure to accelerated weathering condition. Material selected for this study were injection molded specimens of ABS and PC-ABS used in automotive passenger vehicles. Comparative analysis was conducted before and after weathering exposure at defined intervals by using Fourier Transform infra-red spectrometer (FTIR), differential scanning colorimetry (DSC), universal testing machine (UTM), Izod impact tester and microscope to understand the impact on their chemical and mechanical properties.
Technical Paper

Cold Condition N to 1 Gearshift Blockage Analysis in a Manual Transmission Gearbox

2023-11-10
2023-28-0053
Manual transmissions are the preferred transmission for drivers who love sporty gear shifts. Manual transmission vehicles are cheaper, very efficient, and offer quick gear shifts. Worldwide manual transmission contributes to 36.15% and in India it contributes overall 80% of today's market share. The customers expect a very smooth gearshift which is a challenge to achieve in all ambient temperatures. In a gear shift event, the synchronizers synchronize the speed of the gears. The force applied at the gear shift knob, generates the cone torque and stops the rotating input shaft for the Neutral (N) to 1 gear shifting. The early morning gear shifts have high gear shift effort. This effort is getting reduced with the increase in temperature. This is due to the drag in the gearbox which is inevitable. This work focuses on improving the very first gear shift event of N to 1 after the engine crank from cold (8°) to hot (80°) condition.
Technical Paper

Comparative Analysis of Strain based Fatigue Life Obtained from Uni-Axial and Multi-Axial Loading of an Automotive Twist Beam

2017-01-10
2017-26-0312
Twist beam is a type of suspension system that is based on an H or C shaped member typically used as a rear suspension system in small and medium sized cars. The front of the H member is connected to the body through rubber bushings and the rear portion carries the stub axle assembly. Suspension systems are usually subjected to multi-axial loads in service viz. vertical, longitudinal and lateral in the descending order of magnitude. Lab tests primarily include the roll durability of the twist beam wherein both the trailing arms are in out of phase and a lateral load test. Other tests involve testing the twist beam at the vehicle level either in multi-channel road simulators or driving the vehicle on the test tracks. This is highly time consuming and requires a full vehicle and longer product development time. Limited information is available in the fatigue life comparison of multi-axial loading vs pure roll or lateral load tests.
Technical Paper

Develop the Methodology Using DOE Approach to Improve Steering Return Ability of a Vehicle through Virtual Simulation

2019-10-11
2019-28-0012
In driving, Steering is the input motion to the vehicle. The driver uses steering input to change the direction of the vehicle. During Parking or U turn bends the Steering is locked and later released to follow the desired path. Steering return ability is defined as the ratio of difference between steering wheel position at lock condition and steering wheel angle after 3 seconds of release to the steering wheel angle at lock condition. Having proper steering return ability characteristics has an important effect on vehicle steering characteristics. In this study, a full vehicle ADAMS model is prepared, and virtual steering return ability have been simulated in ADAMS/CAR for a Pickup truck vehicle. Simulated responses in the steering wheel angle have been validated by comparison with measurements. A Design of Experiment study is setup and Iterations are carried out to find the effect of Hard points and friction parameters.
Technical Paper

Development and Deployment of Bolted Joint Integrity Evaluation for Automotive Suspension Joints

2022-03-29
2022-01-0761
Bolted joints are the most used joints in automotive suspension assemblies. They are expected to retain the strength over the course of useful life of the vehicle and contribute to durability in a big way through reduction of stress amplitudes. Any sort of loosening or slip or breakage in these joints can lead to noise or catastrophic failures. In the past, such issues were addressed through thumb rules and design guidelines. However, with the focus on first-time right tests with reduced validation time it has become important to upfront predict the suspension joint integrity through simulation. Toward this objective, a novel approach was developed to simulate the suspension joint integrity for bolted joints. This approach considers various parameters like bolt preload, tolerance stackup of the parts in the joint, coefficients of friction of various interfaces, quality of contact and effect of deformation at the thread interface on joint integrity.
Technical Paper

Development of Methodology to Determine Toe Geometry of any Vehicle at Its Early Design Stage for Optimum Tyre Life

2019-10-11
2019-28-0105
Toe setting is one of the major wheel alignment parameters which directly effects handling of a vehicle. Correct toe setting ensures desired dynamic behavior of an automobile like straight line stability, cornering behavior, handling and tire durability. Incorrect setting of toe during design stage significantly deteriorates tire durability and leads to uneven tire wear. In the present scenario of automotive industry, toe setting is majorly an iterative or a trial and error process which is both time consuming and involves higher development cost as there may be instances where 2 to 3 sets of iterations are needed before specification is finalized for production. Therefore, determining optimum toe setting at an early stage of a product development will not only save significant development time but it will also benefit in reducing product validation time and cost.
Technical Paper

Development of a Fuel Efficiency Enhancement Module for Tractors

2024-01-16
2024-26-0064
In farm tractors, the available drawbar power, and Power Take-Off (PTO) power are generally lower than the engine power due to parasitic losses. These losses are caused by engine-driven auxiliary loads such as cooling fans, hydraulic pumps for power steering, alternators, etc. Minimizing these parasitic losses can increase the available drawbar power and PTO power, resulting in direct fuel savings by reducing fuel consumption. The continuous increase in fuel costs and the environmental impact of emitted gases from burned fuel into the atmosphere have necessitated the replacement of hydraulic power steering and mechanical fans with Electric Power Steering (EPS) and electric fans, respectively, to improve efficiency. The existing battery has been replaced with a higher capacity battery to provide power to the electric fan, electric power steering, and other electrical components.
Technical Paper

Development of a Standalone Application in MATLAB to Generate Brake Performance Data

2019-04-02
2019-01-0513
Predicting the brake performance and characteristics is a crucial task in the vehicle development activity. Performance prediction is a challenge because of the involvement of various parts in the brake assembly like booster, master cylinder, calipers, disc and drum brakes. Determination of these characteristics through vehicle level tests requires a lot of time and money. This performance prediction is achieved by theoretical calculations involving vehicle dynamics. The final output must satisfy the regulations. This project involves the creation of a standalone application using MATLAB to predict the various brake performances such as: booster characteristics, adhesion curves, deceleration and pedal effort curves, behavior of brakes during brake and booster failed conditions and braking force diagrams based on the given user inputs. Previously, MS Excel and an application developed in the TK Solver environment was used to predict the brake performance curves.
Technical Paper

Development of simulation methodology to evaluate Leaf Spring strength and predict the Leaf Interface stresses and correlating with test

2024-04-09
2024-01-2735
Leaf Springs are commonly used as a suspension in heavy commercial vehicles for higher load carrying capacity. The leaf springs connect the vehicle body with road profile through the axle & tire assembly. It provides the relative motion between the vehicle body and road profile to improve the ride & handling performance. The leaf springs are designed to provide linear stiffness and uniform strength characteristics throughout its travel. Leaf springs are generally subjected to dynamic loads which are induced due to different road profiles & driving patterns. Leaf spring design should be robust as any failure in leaf springs will put vehicle safety at risk and cost the vehicle manufacturer their reputation. The design of a leaf spring based on conventional methods predicts the higher stress levels at the leaf spring center clamp location and stress levels gradually reduce from the center to free ends of the leaf spring.
Technical Paper

Diagnosis and Elimination of Disc Brake Groan in a Utility Vehicle

2014-04-01
2014-01-0043
Brake groan noise is resolved without any major change in the design of brake system and vehicle sub-system components in the development phase of a utility vehicle. The groan noise is observed during the end of the stopping of the vehicle under moderate braking. The concerned NVH issue is perceived as unacceptable noise in the passenger compartment. Groan induced vibration is subjectively felt on steering and seat frame. A typical process is established to successfully reproduce the groan which helped in precisely evaluating the effect of modifications proposed. The temperature range of the disc which has the highest probability to produce the groan noise is found out experimentally. The transfer path analysis is carried out to find the path contributions from suspension. Acoustic transfer functions from considered paths are measured with the suspension removed from vehicle.
Technical Paper

Durability of Customer Perceived Quality of Molded-in-Color Car Bumper

2019-01-09
2019-26-0319
Customer perceived quality (CPQ) of the car is the impression of excellence that a customer experiences the brand through sight, sound, touch, and scent. Molded-in-color (MIC) bumper’s aesthetic appeal contributes significantly to the CPQ of the car. Typical parameters used to define CPQ are color, gloss, grain definition, grain depth, geometry and draft. In this work the durability of the color and gloss post ageing is understood by using analytical and characterization tools. Using the results of ageing characterization, an attempt has been made to understand the retained newness of MIC bumper.
X