Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Methodology for the Design Optimization of Fuel Control Unit Bracket and Fuel Pump Housing Integration and Achieving the System Targets

2022-03-29
2022-01-0636
The increasing demand for higher specific power and the need for weight reduction and decrease of emissions have become the driving factors of product development in the automotive market today. Substitution of high-density materials and more precise adjustment of material parameters help in significant weight decrease, but it is accompanied by undesirable cost increase and manufacturing complexity. One of the approaches to optimize the design is through the process of integration which involves integrating the functional elements of two or more components into one and achieving a reduction in weight and cost without impacting required performance. This paper explains a similar approach followed as a part of the Design and Development of 1.5 L, 3 Cylinder CRDI Diesel Engine for a new vehicle platform, developed for automotive passenger car application.
Technical Paper

Integrated Exhaust Manifold Design & Optimization of it through HCF and LCF Simulations for a BS6 Compliant Diesel Engine

2021-10-01
2021-28-0168
This paper discusses design and optimization process for the integration of exhaust manifold with turbocharger for a 3 cylinder diesel engine, simulation activities (CAE and CFD), and validation of manifold while upgrading to meet current BS6 emissions. Exhaust after-treatment system needs to be upgraded from a simple DOC (Diesel Oxidation Catalyst) to a complex DOC+sDPF (Selective catalytic reduction coated on Diesel Particulate Filter) to meet the BS6 emission norms for this engine. To avoid thermal losses and achieve a faster light-off temperature in the catalyst, the exhaust after-treatment (EATS) system needs to be placed close to the engine - exactly at the outlet of the turbocharger. This has given to challenges in packaging the EATS. The turbocharger in case of BS4 is placed near the 2nd cylinder of the engine, but this position will not allow placing the BS6 EATS.
Technical Paper

Light Weighting of Accessory Support Bracket from Cast Iron to Aluminium Through Topology Optimization

2022-08-30
2022-01-1110
In today’s scenario, internal combustion engines have conflicting requirements of high power density and best in class weight. High power density leads to higher loads on engine components and calls for a material addition to meet the durability targets. Lightweight design not only helps to improve fuel economy but also reduces the overall cost of the engine. Material change from cast iron to aluminium has a huge potential for weight reduction as aluminium has 62% lesser mass density. But this light-weighting impacts the stiffness of the parts as elastic modulus drops by around 50%. Hence, this calls for revisiting the design and usage of optimization tools for load-bearing members on the engine to arrive at optimized sections and ribbing profiles. This paper discusses the optimization approach for one of the engine components i.e., the FEAD (front end accessory drive) bracket.
X