Refine Your Search

Topic

Author

Search Results

Technical Paper

A 1:3 Small Scale Vehicle Model Investigation in Small Scale Wind Tunnel and Correlation with Full Vehicle Testing

2021-09-22
2021-26-0493
In present study a comparative investigation and correlation attempted on small scale vehicle model for aerody-namic drag performance at small scale wind tunnel test facility in India vs full vehicle tested at globally know and accepted full scale test facility in Pininfarina, Italy. Current investigation aims to assess the small-scale wind tunnel suitable for testing 1:3 small scale car models A scale model of 1:3 scale size was tested in small scale wind tunnel (at IISC,Bengaluru, India) having test section area of 11.68 Sq. m. To understand the overall vehicle aerodynamic drag performance small scale model was test-ed for different configurations such as baseline, spoiler removal, underbody cover and different yaw condition. To understand the correlation between small scale vs full vehicle’s aerodynamic performance one actual vehicle was also tested at full scale wind tunnel Pinifarina Italy.
Technical Paper

A Test Methodology for Vehicle Wind Noise Reduction and Acoustic Quality Improvement

2019-01-09
2019-26-0216
Aeroacoustics of vehicles is becoming an important design criterion as it directly affects passenger’s comfort. The wind noise at highway speeds (>80 KMPH) is a critical quality concern under normal and crosswind conditions and dominant factor in assessing acoustic comfort of the vehicle. Wind noise is caused by the vortex air flow around a vehicle body and air leakage through the sealing gaps of attached parts. This majorly contributes to high frequency noise (>250 Hz). Accurate identification and control of noise sources and leakage paths result in improved acoustic comfort of the vehicle. In this paper, aero-acoustic quality characteristics of validation prototype vehicle are studied. The major wind noise sources and leakage paths in the vehicle are identified through in-house blower set up in the semi anechoic room. The overall wind noise level and articulation index of vehicle at various speeds are determined through on- road measurements.
Technical Paper

Aerodynamic Performance Assessment on Typical SUV Car Model by On-Road Surface Pressure Mapping Method

2021-10-01
2021-28-0188
Aerodynamics of on-road vehicles has come to the limelight in the recent years. Better aerodynamic design of vehicle would improve vehicle fuel efficiency with increased acceleration performance. To obtain best aerodynamic body, the series of design modifications and different testing methodologies must be involved in vehicle design and validation phase. Wind tunnel aerodynamic force measurement, road load determination and computational fluid dynamics were the common methods used to evaluate the aerodynamic behavior of the vehicle body. As a novel approach, the present work discusses about the on-road (Real time) testing methodology that is aimed to evaluate the aerodynamic performance of vehicle body using surface pressure mapping. A 64-Channel digital pressure scanner has been utilized in this work for mapping the pressure at different locations of the typical vehicle body.
Technical Paper

Aspects of Fire and Thermal Safety in Vehicle Development

2015-01-14
2015-26-0156
This paper details the methodology used to prevent Thermal events in a vehicle at design and development stages which can lead to vehicle fire or Thermal events. Vehicle Safety is always been in prime focus for designers while introducing newer products in markets for the customers. It is now common to see vehicles catching on fire in roads and in parking places leading to destruction of the surroundings as well as hazard to the passengers. Thermal events can take place due to the heat dissipated by the heat emitters such as Engine, Turbo, Alternator, Exhaust System etc. So the most critical area where Thermal event can take place are under hood which includes the complete engine compartment and under body. The extent of fire depends on the fire source, characteristics of the materials used in constructing and furnishing the vehicle.
Technical Paper

Automotive Synchronizer with Asymetric Toothing

2011-04-12
2011-01-0724
In automotive Transmission especially in Manual shift Transmission, a mechanism is provided for smooth and quick shifting of gears known as Synchronizer. A synchronizer mechanism having a Sliding shift sleeve, synchronizer ring, clutch body and clutch body ring as the main components to shift the gears smoothly. A synchronizer ring and Clutch body ring having outer tooth with inclined faces i.e. chamfer on their end facing towards gear shift sleeve, having inclination faces to mesh with the same inclined faces of blocker ring and clutch body ring for smooth shifting with less effort. Generally in cold environment certain forces are acting inside the Transmission to reduce the speed of rotating elements, these force are called drag forces. Mostly these drag force are generated due to high viscosity of transmission oil and large Inertia of masses of rotating elements, bearings and oil seals friction etc..
Technical Paper

Customer Usage Profile based Luggage Compartment Development at Concept Phase

2021-10-01
2021-28-0153
The SAE J1100 based standard cargo volume index methods and predefined luggage objects are very specific to United States population. The European luggage volume calculation and standard luggage calculations are primarily based on DIN and ISO standards. Luggage volume declaration by manufacturers are based on any of these methods. The calculations are complicated and there is a possibility of declaring different values for similar luggage compartments. The major purchase decision of vehicle is based on its luggage capacity and current methods are very limited to make an intelligent decision by a customer. Market specific customer usage patterns for luggage requirements and protecting them in vehicle architecture upfront in concept stage is important to retain the market position and buying preference of customers. The usage patterns is collected from customer clinics and marketing inputs.
Technical Paper

Development & Customization of Test Cases for Start-stop Functionality to Achieve On-road Robustness

2013-11-27
2013-01-2875
The Micro-hybrid technology otherwise called as stop start system offers a significant improvement in fuel economy particularly in urban driving conditions, where more often the engine idles unnecessarily at traffic signals/jams. Micro-hybrid technology stops the engine at traffic signals/jams and starts the engine automatically on clearance of traffic signals/jams leading to reduced fuel consumption and emissions. This is achieved by monitoring several vehicle and engine parameters through appropriate sensing elements. In this study, the system architecture and functional definitions of start/stop system is defined. Equivalence class, boundary value and decision-table testing are used to generate test cases. On generation of test cases, their relevance on on-road robustness and scope for optimization towards time/efforts are analyzed. In the process, a matrix of different conditions and criteria are formulated. Under these conditions, the system behavior is evaluated.
Technical Paper

Development of Low Cost FEAD System with Stretch Fit Belt

2018-07-09
2018-28-0064
In Current scenario all Vehicle Manufacturer are looking towards cost effectiveness in their product development without compromising product quality and performance. With this reference, development of low cost FEAD (Front End Accessory Drive) system with stretch fit belt & idlers for multiple accessories has emerged as one of the alternative smart engineering solution against the FEAD with auto tensioner. The beauty of this low cost FEAD system is not only the cost saving but also the long lasting performance without affecting component life. In the current work, development of a low cost FEAD for 3 cylinder 1.5 litre diesel engine has been presented. It was one of the challenges to introduce stretch fit belt for 3 cylinder engine considering the high torsional vibration. The performance of this FEAD system was evaluated in terms of accessories pulley slip and belt flapping. The component durability was assessed both at engine as well as at vehicle level.
Technical Paper

Development of Sensor Based Rotavator Unit For Display of Operational Parameters on Various Soil Conditions

2021-09-22
2021-26-0091
Rotavator is an active tillage implement for breaking the Soil and for the preparation of seed bed for cultivation. The Farmers are currently facing problem due to usage of sub optimal speed of Rotavator which results in more fuel consumption, takes more time for completion of operation. Also, the Current Rental models work on Tractor + Implement as rental combination and customer not able to rent Rotavator as a standalone implement due to non-availability of Tracking information such as hours of utilization on Rotavator. Farmers not able to maintain the service periodicity, if oil change not done in prescribed duration then it may result in improper maintenance and breakdown of the Rotavator. To overcome these problems a smart Rotavator developed consists of an electronic unit fitted on the Rotavator shaft to measure the speed of the shaft rotation and in turn convert to Rotavator speed and also able to convert into Hours of usage based on the starting and stopping of the rotavator.
Technical Paper

Diagnosis and Elimination of Disc Brake Groan in a Utility Vehicle

2014-04-01
2014-01-0043
Brake groan noise is resolved without any major change in the design of brake system and vehicle sub-system components in the development phase of a utility vehicle. The groan noise is observed during the end of the stopping of the vehicle under moderate braking. The concerned NVH issue is perceived as unacceptable noise in the passenger compartment. Groan induced vibration is subjectively felt on steering and seat frame. A typical process is established to successfully reproduce the groan which helped in precisely evaluating the effect of modifications proposed. The temperature range of the disc which has the highest probability to produce the groan noise is found out experimentally. The transfer path analysis is carried out to find the path contributions from suspension. Acoustic transfer functions from considered paths are measured with the suspension removed from vehicle.
Technical Paper

Eco-Friendly Recycled PET (Polyethylene Terephthalate) Material for Automotive Canopy Strip Application

2015-04-14
2015-01-1304
This paper describes the suitability of recycled polyethylene terephthalate (RPET) material for canopy strip in a commercial vehicle. The material described in this paper is a PET compound recycled from used PET bottles and reinforced with glass fibers so as to meet the product's functional requirements. The application described in this paper is a Canopy strip which is a structural exterior plastic part. Canopy strip acts as a structural frame to hold the Vinyl canopy in both sides of the vehicle. Functionally, the part demands a material with adequate mechanical and thermal properties. Generally, PET bottles are thrown after use thereby creating land pollution. PET being inert takes an extremely long time to degrade thereby occupying huge amount of space in landfills and directly affecting rain water percolation. This work focused on recycling the PET bottles and compounding them suitably so as convert them into useful automotive parts.
Technical Paper

Experiences in Cold Start Optimization of a Multi-Purpose Vehicle Equipped with 2.2L Common Rail Diesel Engine

2011-04-12
2011-01-0124
High speed diesel engines are difficult to start in cold conditions (at subzero temperature) because the cylinder head and cylinder block absorbs heat of compression and thus preventing ignition due to the high surface to volume ratio. Also the coolant and the engine oil become viscous at subzero temperature and make the condition unfavorable for starting. Combustion optimization along with the help of a heating aid can make these engines to start quickly without any engine misbehavior. Cold startability is the ability of an engine to start within a specified time and continue to run without any malfunctioning. Combustion instability will lead to the misfiring of the engine unless it is calibrated properly. The European countries are subjected to a minimum temperature of -20°C to -25°C. So the intention of this work is to optimize the cold startability of Mahindra's Multi-Purpose Vehicle (MPV) up to -25°C which is to be sold in European countries.
Technical Paper

Experimental Analysis of Lead Acid Batteries for Estimating State of Charge and State of Health

2013-11-27
2013-01-2742
Batteries have become increasingly important in automotives with increase in vehicle electrical loads. Therefore the reliability of battery is a critical issue in automotive applications. It has been noticed that most batteries have limited cycle durability, that is, the total capacity drops when a battery is charged and discharged for a number of cycles. If a battery is too weak to offer sufficient energy, it should be replaced at the right time. But current problem is that there is no reliable method to quantify the capacity loss and to estimate the remaining capacity of battery. Complete discharge, which is the only way of capacity estimation, which will effect the battery plates therefore it cannot be used too frequently. This paper summarizes the experimental work in the development of the battery status estimation algorithm.
Technical Paper

Finite Element Analysis of FEAD Bracket and Correlation with Test

2010-04-12
2010-01-0493
With the increasing demand for light weight engines, the design of FEAD (Front end accessory drive) Brackets has gradually shifted from conservative cast iron design to optimized aluminum design. Hence there is a requirement for a virtual validation procedure that is robust and accurate. The FEAD brackets for the engine are subjected to periodic vibrations (engine excitations) and random vibrations (Road excitations), the former being the more dominant of the two as road excitations are isolated by the power train mounts. Hence these brackets are susceptible to fatigue failures. The paper describes a virtual validation procedure adopted for FEAD brackets that gives accurate stress prediction and thereby ensures accuracy in predicted fatigue factor of safety for design. The simulated dynamic stresses are later compared with the test results and a good correlation is observed.
Technical Paper

Impact of Chemical Blowing Agent on Polypropylene Properties

2021-10-01
2021-28-0203
Weight reduction in automotive applications have led to the processing of thermoplastic polymers by foam injection molding. The density of the foamed polymer can be reduced up to 20%. Whilst, work has been reported on the weight reduction of the foamed polymer by using different types of blowing agent technologies, there has been limited studies in the areas of the sound transmission loss and sound attenuation properties of these materials. The present study is intended to understand the effect of chemical blowing agent (CBA) on the properties of polypropylene. The molded specimens were characterized using density, Differential scanning colorimetry (DSC), Thermogravimetric analysis (TGA), Fourier transform infra-red spectroscopy (FT-IR) and sound transmission loss (STL) measurements. Specimens were also tested for tensile properties, flexural properties, Izod impact strength and Heat deflection temperature (HDT) as per standard test protocol.
Technical Paper

Ladder Frame Concept Development through Parametric Beam Modelling

2021-09-22
2021-26-0416
Body-over-Frame is the primary type of construction used in SUVs, pick-ups, and other commercial vehicles in India. In this type of construction, the body, engine, suspensions etc. are mounted on the ladder frame. Since the frame acts as the skeleton of the vehicle, optimal design of frame at the concept stage of the vehicle program is critical for meeting all structural performance targets. Frontloading of these targets aids in architecture development and reduces future design modifications. The natural frequency response from the frame directly affects the NVH performance of the vehicle. This paper focuses on frontloading the natural frequency targets by performing concept-level simulations on the ladder frame even before creation of 3D concept data. A parametric beam model is created based on the reference vehicles. The beam model has been validated with correlation of more than 85% compared with CAE and physical testing outputs of existing vehicles.
Technical Paper

Light Weighting of Accessory Support Bracket from Cast Iron to Aluminium Through Topology Optimization

2022-08-30
2022-01-1110
In today’s scenario, internal combustion engines have conflicting requirements of high power density and best in class weight. High power density leads to higher loads on engine components and calls for a material addition to meet the durability targets. Lightweight design not only helps to improve fuel economy but also reduces the overall cost of the engine. Material change from cast iron to aluminium has a huge potential for weight reduction as aluminium has 62% lesser mass density. But this light-weighting impacts the stiffness of the parts as elastic modulus drops by around 50%. Hence, this calls for revisiting the design and usage of optimization tools for load-bearing members on the engine to arrive at optimized sections and ribbing profiles. This paper discusses the optimization approach for one of the engine components i.e., the FEAD (front end accessory drive) bracket.
Technical Paper

Low Rolling Resistance Tires and Their Impact on Electric Vehicles

2017-07-10
2017-28-1941
This paper details the methodology used to show the importance of Low rolling resistance tires in Electric Vehicles. Fuel efficiency and range is paramount with most of the electric vehicle buyers. Although many people are now becoming aware of low rolling resistance tires but its development started way back in 1990’s. It is always challenging to achieve low rolling resistance in smaller tires of size 12 inch or 13 inch along meeting the other critical vehicle parameters such as ride and handling, NVH, durability and many more. The reduction in rolling resistance can also affect the traction properties of tires. In case of very low rolling resistance tires the traction will be very less but it can badly affect the other vehicle parameters. Selection of tires further depend upon the RWUP (Real World Usage Profile). It means the vehicle is targeted for which region and what is the condition of roads there.
Technical Paper

Novel, Compact and Light Weight Plenum Assembly for Automobiles

2017-07-10
2017-28-1924
Plenum is the part located between the front windshield and the bonnet of an automobile . It is primarily used as an air inlet to the HVAC during fresh air mode operation. It’s secondary functions include water drainage, aesthetic cover to hide the gap between windshield to bonnet, concealing wiper motors and mechanisms etc. The plenum consists mainly two sub parts viz. upper plenum and lower plenum. Conventional plenum design which is found in majority of global OEMs employ a plastic upper plenum and a metal lower plenum which spans across the entire width of engine compartment. This conventional lower plenum is bulky, consumes more packaging space and has more weight. In this paper, we propose a novel design for the plenum lower to overcome above mentioned limitations of the conventional design. This novel design employs a dry and wet box concept for its working and is made up of complete plastic material.
Technical Paper

Optimisation of Scooter Frame for Target Life on 2-Poster Rig with Virtual Simulation

2019-01-09
2019-26-0307
Vehicle frame evaluation at early stages of product development cycle is essential to reduce product turnaround time to market. In conventional approach of virtual validation it is required to evaluate the strength of the vehicle structure to account for the standard Service Load Analysis (SLA) loading conditions. But this paper describes on the strength analysis of scooter frame with derivation of critical static load cases. The critical load cases are extracted from the load-time history while the vehicle was simulated on durability virtual test rigs which is equivalent to proving ground tests. This methodology gives the better accuracy in prediction of stress levels and avoids the overdesign of components based on traditional validation technique. There is significant drop in stress levels using the critical load case approach as compared to conventional load case method.
X