Refine Your Search

Topic

Search Results

Technical Paper

A Case Study of Compressor Surge Related Noise on Turbocharged 2.0-L Gasoline Engine

2021-09-22
2021-26-0282
Till recently supercharging was the most accepted technique for boost solution in gasoline engines. Recent advents in turbochargers introduced turbocharging technology into gasoline engines. Turbocharging of gasoline engines has helped in powertrains with higher power density and less overall weight. Along with the advantages in performance, new challenges arise, both in terms of thermal management as well as overall acoustic performance of powertrains. The study focuses mainly on NVH aspects of turbocharging of gasoline engines. Compressor surge is a most common phenomenon in turbochargers. As the operating point on the compressor map moves closer to the surge line, the compressor starts to generate noise. The amplitude and frequency of the noise depends on the proximity of the operating point to the surge line. The severity of noise can be reduced by selecting a turbocharger with enough compressor surge margin.
Technical Paper

A Comprehensive Study on the Challenges of Dual Mass Flywheel in Real-World Operating Conditions of the Indian Market

2020-04-14
2020-01-1014
The present work is focussed on the real-world challenges of a dual mass flywheel (DMF) equipped vehicle in the Indian market. DMFs are widely used to isolate the drivetrain from the high torsional vibrations induced by the engine. While DMFs can significantly improve noise, vibration and harshness (NVH) characteristics of a vehicle, there are multiple challenges experienced in real-world operating conditions when compared with the single mass flywheel (SMF). The present work explains the challenges of using a DMF in a high power-density diesel powertrain for a multi-purpose vehicle (MPV) application in the Indian market. Measurements on the flat-road operating conditions revealed that the DMF vehicle is very sensitive for launch behaviour and requires a higher clutch modulation. Vibration measurements at the driver’s seat confirm that the SMF vehicle could be launched more comfortably at the engine idle speed of 850 RPM.
Technical Paper

A Disciplined Approach to Minimize Rattle Issues in Automotive Glove Box Assembly

2018-06-13
2018-01-1481
Nowadays, perception of automotive quality plays a crucial role in customer decision of vehicle purchase. Hence, automotive OEM’s are now working on the philosophy of “Quality Sound”. Out of all the Noise, Vibration & Harshness (NVH) issues identified in a vehicle, the ranking of Buzz, Squeak & Rattle (BSR) stands high and glove box rattle is one of the issues that is continuously observed in all customer verbatim. Specific issues like lid rattle and latch rattle are predominant and gets worse over mileage accumulation. Also minimizing BSR issues in glove box is difficult due to complex latch mechanism. While deciding the bump stop specifications more weightage is given to efforts. The bump stop is selected in a way as not to increase the glove box opening and closing efforts, but the selected bump stops will not provide enough preload to glove box lid leading to rattle issues.
Technical Paper

A Holistic Approach of Developing New High Strength Cast Iron for Weight Optimization

2021-09-22
2021-26-0244
Foundry industries are very much familiar and rich experience of producing ferrous castings mainly Flake Graphite (FG) and Spheroidal Graphite (SG) cast iron. Grey cast iron material is mainly used for dampening applications and spheroidal graphite cast iron is used in structural applications wherein high strength and moderate ductility is necessary to meet the functional requirements. However, both types of cast iron grades are very much suitable in terms of manufacturing in an economical way. Those grades are commercially available and being consumed in various industries like automotive, agriculture etc, High strength SG Iron grades also being manufactured by modifying the alloying elements with copper, chromium, manganese andcobalt. but it has its own limitation of reduction in elongation when moving from low to high strength SG iron material. To overcome this limitation a new cast iron developed by modifying the chemical composition.
Journal Article

A Simulation Approach for Identification and Design Optimization to Prevent Headrest Rattle

2019-01-09
2019-26-0190
Squeak and rattle concerns account for approximately 10% of overall vehicle Things Gone Wrong (TGW) and are a major quality concern for automotive OEM’s. Seat is one of the major contributors of squeak and rattle issues observed in customer verbatim. Seat head rest rod and bezel are designed concentric to each other with a gap that allows free movement and a locking pin to position at different levels. Due to the design gap and weight of the head rest there is always tendency for relative displacement leading to rattle issues. Seat headrest, is close to the customer ear and any rattles at headrest will create annoying driving experience. Also, the contradictory requirements between efforts and rattle makes the scenario more difficult to fine tune the bezel specifications. The root cause for head rest rattle issues can also be related to free play between bezel and seat frame, free play between bezel and cap, looseness between locking pin and headrest rod etc.
Technical Paper

A Study on Automotive Sheetmetal Surface Pretreatment: Liquid Activation and Low Temperature Phosphating

2023-05-25
2023-28-1324
Phosphating is the most preferred surface treatment process used for auto body sheet panel before painting due to its low-cost, easy production process, good corrosion resistance, and excellent adhesion with subsequent paint layer. There are different phosphating processes used for ferrous metal like zinc phosphating, iron phosphating, di-cationic & tri-cationic phosphating, etc. Among these phosphate coatings, the best corrosion resistance and surface adhesion are achieved by tri-cationic phosphate coatings (zinc-nickel-manganese phosphate). Many new technologies of phosphating are evolving. Key drivers for this evolution are increasing demand for higher corrosion resistance, multi-metal car body processing in same phosphating bath and sustainability initiatives to reduce the carbon footprints. We have evaluated two of these recent technologies.
Technical Paper

A Test Methodology for Vehicle Wind Noise Reduction and Acoustic Quality Improvement

2019-01-09
2019-26-0216
Aeroacoustics of vehicles is becoming an important design criterion as it directly affects passenger’s comfort. The wind noise at highway speeds (>80 KMPH) is a critical quality concern under normal and crosswind conditions and dominant factor in assessing acoustic comfort of the vehicle. Wind noise is caused by the vortex air flow around a vehicle body and air leakage through the sealing gaps of attached parts. This majorly contributes to high frequency noise (>250 Hz). Accurate identification and control of noise sources and leakage paths result in improved acoustic comfort of the vehicle. In this paper, aero-acoustic quality characteristics of validation prototype vehicle are studied. The major wind noise sources and leakage paths in the vehicle are identified through in-house blower set up in the semi anechoic room. The overall wind noise level and articulation index of vehicle at various speeds are determined through on- road measurements.
Technical Paper

A Unique Methodology to Evaluate the Metallic Noise Concern of a Dual-Mass Flywheel in Real-World Usage Conditions

2021-10-01
2021-28-0249
Dual mass flywheel (DMF) is an excellent solution to improve the noise, vibration, and harshness (NVH) characteristic of any vehicle by isolating the driveline from the engine torsional vibrations. For the same reason, DMF’s are widely used in high power-density diesel and gasoline engines. However, the real-world usage conditions pose a lot of challenges to the robustness of the DMF. In the present work, by capturing the Real-World Usage Profile (RWUP) conditions, a new methodology is developed to evaluate the robustness of a DMF fitted in a Sports utility vehicle (SUV). Ventilation holes are provided on clutch housing to improve convective heat transfer. Improvement in convective heat transfer will increase the life and will reduce clutch burning concerns. Cities like Mumbai, Chennai, Bangalore, roads will have clogged waters during rainy season. When the vehicle was driven in such roads, water enters inside the clutch housing through ventilation holes.
Technical Paper

A Unique Methodology to Evaluate the Structural Robustness of a Dual-Mass Flywheel under Real-World Usage Conditions

2020-09-25
2020-28-0475
Dual mass flywheel (DMF) is an excellent solution to improve the noise, vibration and harshness (NVH) characteristic of any vehicle by isolating the driveline from the engine torsional vibrations. For the same reason, DMFs are widely used in high power-density diesel and gasoline engines. However, the real-world usage conditions pose a lot of challenges to the structural robustness of the DMF. In the present work, a new methodology is developed to evaluate the robustness of a DMF fitted in a compact sports utility vehicle (SUV) with rear-wheel drive architecture. The abuse conditions (mis-gear, sudden braking, etc) in the real-world usage could lead to a sudden engine stall leading to an abnormally high angular deceleration of the driveline components. The higher rate of deceleration coupled with the higher rotational moment of inertia of the systems might end up in introducing a significantly high impact torque on the DMF.
Technical Paper

Agricultural Tractor Engine Noise Prediction and Optimization through Test and Simulation Techniques

2021-09-22
2021-26-0277
Engine radiated noise has complex behavior as engine assembly consist different components, varying dynamic forces with wide range of speed. For open station tractor, engine noise is major contributor and hence needs to be optimized for regulatory norms as well customer comfort. The awareness about NVH comfort in domestic market as well as export market is increasing as customer have become more demanding. This forces OEM’s to put serious efforts to ensure the OEL noise / Engine noise is at acceptable levels. Identifying the optimized countermeasures to reduce the engine noise during the early design phase has a greater impact in reducing product development time and cost. This paper describes about a process that has been established for evaluating engine radiated noise and to improve the overall NVH performance.
Technical Paper

Analysis of Drive Line Vibration and Boom Noise in an All Wheel Drive Utility Vehicle

2014-04-01
2014-01-1975
The customer demand for all wheel drive (AWD) vehicles is increasing over the period of time which also requires NVH performance on par with front wheel drive vehicles. AWD vehicles are equipped with power transfer unit, propeller shaft and independent rear differential assembly to achieve their functional requirement. The additional drive train components in AWD vehicles may amplify torsional fluctuations in the drive line. Hence achieving the NVH performance of AWD vehicles on par with FWD vehicles without any major change in the existing design is a major challenge. In this work, an AWD vehicle with severe body vibration and booming noise is studied. The operational measurements are taken throughout the drive train on all sub-systems from engine to the rear part of the body in the problematic operating condition. An operational deflection shape analysis is conducted to visualize the vibration behavior of the drive train.
Technical Paper

Design For Affordability -Composite Running Board

2015-01-14
2015-26-0070
Light weighting is the Current trends in automotive to achieve better fuel economy which helps for meeting fuel economy standards & to offset the higher fuel prices. Thus there is a need to develop composite running board which is light weight & structurally sound enough to meet the performance. The present paper provides a composite running board assembly for an automobile. The running board assembly includes a board, an insert body and a plurality of brackets. Upon stepping of a passenger on the board, the board transfers load on the insert body which subsequently transfers the load to the plurality of brackets thus facilitating even distribution of the load on the automobile body. This paper also put lights on the use of improved TRIZ application - an approach to inventive problem solving for designing highly affordable & light weight running board. The cost & weight reduction achieved with innovative design is about 40 % & 35 % comparing to existing cost & weight.
Technical Paper

Diagnosis and Elimination of Disc Brake Groan in a Utility Vehicle

2014-04-01
2014-01-0043
Brake groan noise is resolved without any major change in the design of brake system and vehicle sub-system components in the development phase of a utility vehicle. The groan noise is observed during the end of the stopping of the vehicle under moderate braking. The concerned NVH issue is perceived as unacceptable noise in the passenger compartment. Groan induced vibration is subjectively felt on steering and seat frame. A typical process is established to successfully reproduce the groan which helped in precisely evaluating the effect of modifications proposed. The temperature range of the disc which has the highest probability to produce the groan noise is found out experimentally. The transfer path analysis is carried out to find the path contributions from suspension. Acoustic transfer functions from considered paths are measured with the suspension removed from vehicle.
Technical Paper

Eco-Friendly Recycled PET (Polyethylene Terephthalate) Material for Automotive Canopy Strip Application

2015-04-14
2015-01-1304
This paper describes the suitability of recycled polyethylene terephthalate (RPET) material for canopy strip in a commercial vehicle. The material described in this paper is a PET compound recycled from used PET bottles and reinforced with glass fibers so as to meet the product's functional requirements. The application described in this paper is a Canopy strip which is a structural exterior plastic part. Canopy strip acts as a structural frame to hold the Vinyl canopy in both sides of the vehicle. Functionally, the part demands a material with adequate mechanical and thermal properties. Generally, PET bottles are thrown after use thereby creating land pollution. PET being inert takes an extremely long time to degrade thereby occupying huge amount of space in landfills and directly affecting rain water percolation. This work focused on recycling the PET bottles and compounding them suitably so as convert them into useful automotive parts.
Technical Paper

Impact of Chemical Blowing Agent on Polypropylene Properties

2021-10-01
2021-28-0203
Weight reduction in automotive applications have led to the processing of thermoplastic polymers by foam injection molding. The density of the foamed polymer can be reduced up to 20%. Whilst, work has been reported on the weight reduction of the foamed polymer by using different types of blowing agent technologies, there has been limited studies in the areas of the sound transmission loss and sound attenuation properties of these materials. The present study is intended to understand the effect of chemical blowing agent (CBA) on the properties of polypropylene. The molded specimens were characterized using density, Differential scanning colorimetry (DSC), Thermogravimetric analysis (TGA), Fourier transform infra-red spectroscopy (FT-IR) and sound transmission loss (STL) measurements. Specimens were also tested for tensile properties, flexural properties, Izod impact strength and Heat deflection temperature (HDT) as per standard test protocol.
Technical Paper

Methodology Development for Open Station Tractor OEL Noise Assessment in the Virtual Environment

2021-09-22
2021-26-0310
There is a higher demand for quieter tractors in the agri-industry, as the continued exposure to noise levels have disastrous effects on operator’s health. To meet the world-wide regulatory norms and to be the global market leader, its mandatory to develop the comfortable tractor which meets homologation requirements and customer expectations. Typically, Operator Ear Level (OEL) noise has been evaluated in the test, after First Proto has been made. This approach increases cost associated with product development due to late changes of modifications and testing trails causing delay in time-to-market aspect. Hence, there is a need to develop the methodology for Predicting tractor OEL noise in virtual environment and propose changes at early stage of product development. At first, full vehicle comprising of skid, sheet metals and Intake-exhaust systems modelled has been built using Finite Element (FE) Preprocessor.
Technical Paper

Novel, Compact and Light Weight Plenum Assembly for Automobiles

2017-07-10
2017-28-1924
Plenum is the part located between the front windshield and the bonnet of an automobile . It is primarily used as an air inlet to the HVAC during fresh air mode operation. It’s secondary functions include water drainage, aesthetic cover to hide the gap between windshield to bonnet, concealing wiper motors and mechanisms etc. The plenum consists mainly two sub parts viz. upper plenum and lower plenum. Conventional plenum design which is found in majority of global OEMs employ a plastic upper plenum and a metal lower plenum which spans across the entire width of engine compartment. This conventional lower plenum is bulky, consumes more packaging space and has more weight. In this paper, we propose a novel design for the plenum lower to overcome above mentioned limitations of the conventional design. This novel design employs a dry and wet box concept for its working and is made up of complete plastic material.
Technical Paper

Optimization of Clutch Pedal Vibration without Compromising the Overall Efficiency of the Clutch System

2021-10-01
2021-28-0247
The clutch pedal in manual transmission plays a significant role in defining the comfort of driver as the component is one of the end user’s direct interface in the vehicle. Whenever driver operates the clutch pedal, comfort and NVH refinement should be felt over the complete pedal travel. The expectations of customer on NVH refinements, such as pedal vibration felt on foot during actuation, becomes the part of perceived quality and hence addressing the concern is very crucial. Due to advancements of technology and down-sizing of engines, NVH becomes the challenging area where the clutch pedal vibrations need to be eliminated to improve the comfort. In this paper we are explaining the problem statement and NVH solution to eliminate the clutch pedal vibration observed during clutch pedal actuation. Pedal vibrations were very severe at 10% clutch pedal pressed condition, and the same tends to diminish till 50% clutch pedal pressed condition.
Technical Paper

Optimization of the Dynamic Behaviour of Gasoline Engine to Reduce Valve Train Noise

2015-01-14
2015-26-0132
High fuel efficiency, low ownership/ maintenance cost and favorable driving climate are the major reasons for the increasing demand for low-power commuter motorcycles and scooters, particularly in developing countries like India, Brazil and China. Noise Vibration and Harshness (NVH) has now become a new subject for the battle between competing manufacturers in attracting customers. Valvetrain noise is quite significant in the engines of these cost gasoline vehicles as they don't incorporate a Hydraulic Lash Adjuster (HLA) to keep the manufacturing costs less. The aim of this study was to understand how the cam ramp velocity and height affects the noise generated by the engine and what effect they have on its performance.For this study, a small scooter gasoline engine with an Over Head Camshaft (OHC) and a rocker arrangement with a roller-follower was considered. A commercially available numerical code was used to simulate the kinematic and dynamic behaviour of the valvetrain system.
Technical Paper

Scientific Approach for Pickup Cargo Weight Reduction

2024-01-16
2024-26-0192
In this study, the benchmarked-based statistical Light Weight Index (LWI) technique is developed for predicting the world in class optimum weight. For these four statistical Lightweight Index numbers are derived based on the geometrical dimensions. This strategy is used for the target setting. To achieve the target, the Value Analysis approach for Cargo assembly is to redesign and make Refresh Cargo assembly. The organization also benefited directly by reducing the inventory cost and transportation costs because of the deletion of parts and minimizing the assemblies. Vehicle power-to-weight ratio and fuel economy also improved based on cutting weight. The complete case study with details has been mentioned in the work. The weight benefit led to an increase in the profit margin and caters to the difficulty because of the daily increase in the price of raw materials.
X