Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

A Durability Analysis Case Study of SUV and MUV Using Measured Proving Ground Road Profiles

2010-04-12
2010-01-0495
With an increasing demand to reduce the product development time cycle from concept-to-vehicle, weight saving effort and less prototype initiative, CAE evaluation technique in the vehicle durability development must allow the computer simulation to reproduce the actual driving condition over a proving ground. This paper describes the case study to predict the durability performance of full vehicle using vehicle FE parts in ADAMS model. The objective is to carry out full vehicle simulation in actual road load condition using reduced full vehicle FE model, condensed with the ADAMS model. The measured acceleration is applied to the vehicle FE model and dynamic loads converted to equivalent static loads. The FE model solved in MSC.Nastran® with number of static load subcases converted from the measured proving ground road data. It also verifies the validity of the evaluation methodologies by simulation-to-experiment comparisons.
Technical Paper

A Study on Automotive Sheetmetal Surface Pretreatment: Liquid Activation and Low Temperature Phosphating

2023-05-25
2023-28-1324
Phosphating is the most preferred surface treatment process used for auto body sheet panel before painting due to its low-cost, easy production process, good corrosion resistance, and excellent adhesion with subsequent paint layer. There are different phosphating processes used for ferrous metal like zinc phosphating, iron phosphating, di-cationic & tri-cationic phosphating, etc. Among these phosphate coatings, the best corrosion resistance and surface adhesion are achieved by tri-cationic phosphate coatings (zinc-nickel-manganese phosphate). Many new technologies of phosphating are evolving. Key drivers for this evolution are increasing demand for higher corrosion resistance, multi-metal car body processing in same phosphating bath and sustainability initiatives to reduce the carbon footprints. We have evaluated two of these recent technologies.
Technical Paper

A Test Methodology for Vehicle Wind Noise Reduction and Acoustic Quality Improvement

2019-01-09
2019-26-0216
Aeroacoustics of vehicles is becoming an important design criterion as it directly affects passenger’s comfort. The wind noise at highway speeds (>80 KMPH) is a critical quality concern under normal and crosswind conditions and dominant factor in assessing acoustic comfort of the vehicle. Wind noise is caused by the vortex air flow around a vehicle body and air leakage through the sealing gaps of attached parts. This majorly contributes to high frequency noise (>250 Hz). Accurate identification and control of noise sources and leakage paths result in improved acoustic comfort of the vehicle. In this paper, aero-acoustic quality characteristics of validation prototype vehicle are studied. The major wind noise sources and leakage paths in the vehicle are identified through in-house blower set up in the semi anechoic room. The overall wind noise level and articulation index of vehicle at various speeds are determined through on- road measurements.
Technical Paper

Customer Usage Profile based Luggage Compartment Development at Concept Phase

2021-10-01
2021-28-0153
The SAE J1100 based standard cargo volume index methods and predefined luggage objects are very specific to United States population. The European luggage volume calculation and standard luggage calculations are primarily based on DIN and ISO standards. Luggage volume declaration by manufacturers are based on any of these methods. The calculations are complicated and there is a possibility of declaring different values for similar luggage compartments. The major purchase decision of vehicle is based on its luggage capacity and current methods are very limited to make an intelligent decision by a customer. Market specific customer usage patterns for luggage requirements and protecting them in vehicle architecture upfront in concept stage is important to retain the market position and buying preference of customers. The usage patterns is collected from customer clinics and marketing inputs.
Technical Paper

Development of Low Cost FEAD System with Stretch Fit Belt

2018-07-09
2018-28-0064
In Current scenario all Vehicle Manufacturer are looking towards cost effectiveness in their product development without compromising product quality and performance. With this reference, development of low cost FEAD (Front End Accessory Drive) system with stretch fit belt & idlers for multiple accessories has emerged as one of the alternative smart engineering solution against the FEAD with auto tensioner. The beauty of this low cost FEAD system is not only the cost saving but also the long lasting performance without affecting component life. In the current work, development of a low cost FEAD for 3 cylinder 1.5 litre diesel engine has been presented. It was one of the challenges to introduce stretch fit belt for 3 cylinder engine considering the high torsional vibration. The performance of this FEAD system was evaluated in terms of accessories pulley slip and belt flapping. The component durability was assessed both at engine as well as at vehicle level.
Technical Paper

Diagnosis and Elimination of Disc Brake Groan in a Utility Vehicle

2014-04-01
2014-01-0043
Brake groan noise is resolved without any major change in the design of brake system and vehicle sub-system components in the development phase of a utility vehicle. The groan noise is observed during the end of the stopping of the vehicle under moderate braking. The concerned NVH issue is perceived as unacceptable noise in the passenger compartment. Groan induced vibration is subjectively felt on steering and seat frame. A typical process is established to successfully reproduce the groan which helped in precisely evaluating the effect of modifications proposed. The temperature range of the disc which has the highest probability to produce the groan noise is found out experimentally. The transfer path analysis is carried out to find the path contributions from suspension. Acoustic transfer functions from considered paths are measured with the suspension removed from vehicle.
Technical Paper

Finite Element Analysis of FEAD Bracket and Correlation with Test

2010-04-12
2010-01-0493
With the increasing demand for light weight engines, the design of FEAD (Front end accessory drive) Brackets has gradually shifted from conservative cast iron design to optimized aluminum design. Hence there is a requirement for a virtual validation procedure that is robust and accurate. The FEAD brackets for the engine are subjected to periodic vibrations (engine excitations) and random vibrations (Road excitations), the former being the more dominant of the two as road excitations are isolated by the power train mounts. Hence these brackets are susceptible to fatigue failures. The paper describes a virtual validation procedure adopted for FEAD brackets that gives accurate stress prediction and thereby ensures accuracy in predicted fatigue factor of safety for design. The simulated dynamic stresses are later compared with the test results and a good correlation is observed.
Technical Paper

Implementation of a Driver-in-the-Loop Methodology for Virtual Development of Semi-Active Dampers

2024-04-09
2024-01-2759
In today’s rapidly evolving automotive world, reduction of time to market has prime importance for a new product development. It is critical to have significant front-loading of the development activities to reduce development time while achieving best in class performance targets. Driver-in-the-loop (DIL) simulators have shown significant potential for achieving it, through real time subjective feedback at preliminary stages of the vehicle development. Recent advances in technology of driving simulators have enabled quite accurate representation steering and handling performance, also good prediction on primary ride and low frequency vibrations. In conventional damper development, the definition of the initial dampers tuning specifications typically requires a mule vehicle, or atleast, a comparable vehicle. However, this approach is associated with protracted iterations that consume substantial time and cost.
Technical Paper

Ladder Frame Concept Development through Parametric Beam Modelling

2021-09-22
2021-26-0416
Body-over-Frame is the primary type of construction used in SUVs, pick-ups, and other commercial vehicles in India. In this type of construction, the body, engine, suspensions etc. are mounted on the ladder frame. Since the frame acts as the skeleton of the vehicle, optimal design of frame at the concept stage of the vehicle program is critical for meeting all structural performance targets. Frontloading of these targets aids in architecture development and reduces future design modifications. The natural frequency response from the frame directly affects the NVH performance of the vehicle. This paper focuses on frontloading the natural frequency targets by performing concept-level simulations on the ladder frame even before creation of 3D concept data. A parametric beam model is created based on the reference vehicles. The beam model has been validated with correlation of more than 85% compared with CAE and physical testing outputs of existing vehicles.
Technical Paper

Light Weighting of Accessory Support Bracket from Cast Iron to Aluminium Through Topology Optimization

2022-08-30
2022-01-1110
In today’s scenario, internal combustion engines have conflicting requirements of high power density and best in class weight. High power density leads to higher loads on engine components and calls for a material addition to meet the durability targets. Lightweight design not only helps to improve fuel economy but also reduces the overall cost of the engine. Material change from cast iron to aluminium has a huge potential for weight reduction as aluminium has 62% lesser mass density. But this light-weighting impacts the stiffness of the parts as elastic modulus drops by around 50%. Hence, this calls for revisiting the design and usage of optimization tools for load-bearing members on the engine to arrive at optimized sections and ribbing profiles. This paper discusses the optimization approach for one of the engine components i.e., the FEAD (front end accessory drive) bracket.
Technical Paper

Novel, Compact and Light Weight Plenum Assembly for Automobiles

2017-07-10
2017-28-1924
Plenum is the part located between the front windshield and the bonnet of an automobile . It is primarily used as an air inlet to the HVAC during fresh air mode operation. It’s secondary functions include water drainage, aesthetic cover to hide the gap between windshield to bonnet, concealing wiper motors and mechanisms etc. The plenum consists mainly two sub parts viz. upper plenum and lower plenum. Conventional plenum design which is found in majority of global OEMs employ a plastic upper plenum and a metal lower plenum which spans across the entire width of engine compartment. This conventional lower plenum is bulky, consumes more packaging space and has more weight. In this paper, we propose a novel design for the plenum lower to overcome above mentioned limitations of the conventional design. This novel design employs a dry and wet box concept for its working and is made up of complete plastic material.
Technical Paper

Optimisation of Scooter Frame for Target Life on 2-Poster Rig with Virtual Simulation

2019-01-09
2019-26-0307
Vehicle frame evaluation at early stages of product development cycle is essential to reduce product turnaround time to market. In conventional approach of virtual validation it is required to evaluate the strength of the vehicle structure to account for the standard Service Load Analysis (SLA) loading conditions. But this paper describes on the strength analysis of scooter frame with derivation of critical static load cases. The critical load cases are extracted from the load-time history while the vehicle was simulated on durability virtual test rigs which is equivalent to proving ground tests. This methodology gives the better accuracy in prediction of stress levels and avoids the overdesign of components based on traditional validation technique. There is significant drop in stress levels using the critical load case approach as compared to conventional load case method.
Technical Paper

Optimizing OSRVM Package for Maximizing In-vehicle Visibility

2015-09-29
2015-01-2837
Overall in-vehicle visibility is considered as a key safety parameter essentially mandated due to the increasing traffic scenario as seen in developing countries. Driver side bottom corner visibility is one such parameter primarily defined by A-pillar bottom and outside rear-view mirror (OSRVM). While defining the OSRVM package requirements such as size, position and regulatory aspects, it is also vital to consider other influencing parameters such as position of pillars, waist-line height, and Instrument panel which affect the in-vehicle visibility. This study explains the various package considerations, methods to optimize OSRVM position, shape and housing design in order to maximize the in-vehicle visibility considering the road and traffic conditions. A detailed study on in-vehicle visibility impacted by OSRVM packaging explained and had been verified for the results.
Technical Paper

Optimum Solution for Reduction of Clutch Pedal Vibration and Groan Noise Observed During Clutch Pedal Actuation

2021-10-01
2021-28-0169
In emerging markets like India, manual transmission vehicles are still most preferred & contributes to 85% of passenger vehicle sales due to its cost benefit. However, customer expects good NVH behavior for comfortable driving experience in the vehicle to maneuver effortlessly in the highly congested traffic conditions in India. Clutch & its hydraulic release system in manual transmission of IC engines are the significant components which affects the NVH behavior & maneuverability of the vehicle and the driver comfort significantly. This paper focuses on the clutch pedal vibration & groan noise concern observed during clutch pedal actuation in high power density SUV vehicle developed for Indian market. The vehicle had highly efficient & light weight engine which has high engine axial vibrations. Axial vibrations are caused due to engine firing impulses & crankshaft bending causes flywheel axial movement.
Technical Paper

Prediction of Tractor CG by Considering the Safety Devices at Concept Level

2020-09-25
2020-28-0476
Tractor weight transfer is the most common farm-related cause of fatalities nowadays. As in India it is getting mandatory for all safety devices across all HP ranges. Considering any changes in the weight from an attachment such as Rops, PTO device, tow hook and draw bar etc. can shift the center of gravity towards the weight. center of gravity is higher on a tractor because the tractor needs to be higher in order to complete operations over crops and rough terrain. Terrains, attachments, weights, and speeds can change the tractor’s resistance to turning over. This center of gravity placement disperses the weight so that 30 percent of the tractor’s weight is on the front axle and 70 percent is on the rear axle for two-wheel drive propelled tractors and it must remain within the tractor’s stability baseline for the tractor to remain in an upright position.
Technical Paper

SCV Chassis Performance Optimization Through Parametric Beam Modelling & Simulation

2021-10-01
2021-28-0183
In automotive product development, design and development of the chassis plays an important role since all the internal and external loads pass through the vehicle chassis. Durability, NVH, Dynamics as well as overall vehicle performance is dependent on the chassis structure. Even though passenger vehicle chassis has a ladder frame or a monocoque construction, small commercial vehicle chassis is a hybrid chassis with the cabin welded to the ladder frame. As mileage is critical for sale of SCVs, making a light-weight chassis is also important. This creates a trade-off between the performance and weight which needs to be optimized. In this study, a parametric beam model of the ladder frame & the cabin of the vehicle is created in COMSOL Multiphysics. The structure has been parameterized into the long member & crossmember geometry & sections. The model calculates the first 12 natural frequencies, global stiffness, and weight.
Technical Paper

Systematic Approach to Design Hand Controlled Parking Brake System for Passenger Car

2015-01-14
2015-26-0078
This paper is an attempt to compile a systematic approach which can be easily incorporated in the product development system used in the design and development of parking brake systems for passenger cars having rear drum brakes, which in turn can effectively reduce the lead time and give improved performance. The vehicle GVW, percentage gradient and maximum effort limits (as per IS 11852 - Part 3), tire and drum brake specifications were taken as front loading. This data is used for target setting of functional and engineering parameters, such as lever pull effort, lever ratio and angular travel of lever. Design calculations were performed to obtain theoretical values of critical parameters like lever effort and travel. The comparison between target and theoretical values give the initial confidence to the system engineer. Further, the outcome was taken to conceptualize the hard points of lever on vehicle for ergonomics.
Technical Paper

Utilizing Weathering Effect to Understand Squeak Risk on Material Ageing

2021-09-22
2021-26-0280
Squeak and rattle concerns accounts for approximately 10% of overall vehicle Things Gone Wrong (TGW) and are major quality concern for automotive OEM’s. Objectionable door noises such as squeak and rattle are among the top 10 IQS concerns under any OEM nameplate. Customers perceive Squeak and rattle noises inside a cabin as a major negative indicator of vehicle build quality and durability. Door squeak and rattle issues not only affects customer satisfaction index, but also increase warranty cost to OEM significantly. Especially, issues related to door, irritate customers due to material incompatibilities. Squeaks are friction-induced noises generated by stick-slip phenomenon between interfacing surfaces. Several factors, such as material property, friction coefficient, relative velocity, temperature, and humidity, are involved in squeak noise causes.
Journal Article

Virtual Road Approach for Vehicle Durability Simulations

2013-04-08
2013-01-1165
In current scenario, virtual validation is one of the important phase for any new product development process. The initial step for virtual validation for durability analysis of vehicle is to understand the loads which are transmitted to body from the roads. In current methodology standard 3g load cases are considered. These are worst load cases which show more number of high stress locations on vehicle. In actual vehicle running condition, dynamic loads are coming on vehicle structure. These dynamic loads can be obtained by measuring the loads coming on the vehicle through road load data acquisition system. The use of measured loads posed challenges due to the non-availability of representative mule in the initial phase of vehicle development. To overcome these challenges, Mahindra & Mahindra developed a new approach which enabled the direct substitution of analytically synthesized loads for measured data.
X