Refine Your Search

Topic

Author

Search Results

Technical Paper

A Component Level Test Methodology to Validate Hydraulic Clutch Slave Cylinder

2021-04-06
2021-01-0709
In this current fast-paced world, releasing a defect free product on time is of utmost importance in the automotive domain. The automobile powertrain is designed with a fine balance of weight and power. Clutch, an intermediate part between engine & transmission in manual transmission vehicle plays crucial role for vehicle smooth drive & functionality. Hydraulic clutch slave cylinder (CSC) which is a part of clutch release system was observed with one failure mode in one of the vehicles during internal road validation. It facilitates to actuate the clutch diaphragm in order to disengage the clutch when clutch pedal is pressed and to re-engage the clutch back when the clutch pedal is released. CSC failure directly disconnects the response of leg to clutch and thus driver may lose vehicle control and can possibly cause a severe vehicle crash.
Technical Paper

A Comprehensive Study on the Design and Development Methodology of Automotive Steel Wheel Rims Undergoing Highly Transient Cornering Events

2021-04-06
2021-01-0827
Wheel rim is one of the most critical safety parts in a vehicle. Strength in cornering loading is one of the most important durability test requirements for automotive steel wheel rim apart from other loading conditions like vertical and impact loads. Based on the category of vehicle and customer usage pattern, the accelerated cornering test is derived for testing steel wheel rims. The simulation and certification of steel wheel rim for the required dynamic durability testing requirement involves many steps ranging from acceptance criteria derivation to reliably addressing known potential failure zones in steel wheel rims. Nave radius and crown are sensitive to cornering loads, given the pitch circle diameter at the concept stage, the known effects of these key parameters are determined from DOE and used as reliable indicators to arrive at the shape and section of the steel wheel rim.
Technical Paper

Agricultural Tractor Cabin Structure Design for Durability and Rollover Protective Structure Test

2015-01-14
2015-26-0163
A cabin on an agricultural tractor is meant to protect the operator from harsh environment, dust and provide an air conditioned space. As it is an enclosed space, cabin structure should be a crashworthiness structure and should not cause serious injury to operator in case of tractor roll over. There are International standard like OECD Code 4, SAE J2194 which regulates the crashworthiness of this protective structure. The roll-over protective structure (ROPS) is characterized by the provision of space for a clearance zone large enough to protect the operator in case of tractor overturn. None of the cabin parts should enter into the clearance zone for operator safety. In addition to meeting ROPS test criteria, the cabin structural strength should be optimized for the required tractor life. In this paper, simulation process has been established to design an agricultural tractor cabin structure and its mountings to meet the above requirements.
Technical Paper

CAE Prediction and Test Correlation for Tractor Roll-over Protective Structure (ROPS)

2015-04-14
2015-01-1476
Roll-over protective structures (ROPS) are safety devices which provide a safe environment for the tractor operator during an accidental rollover. The ROPS must pass either a dynamic or static testing sequence or both in accordance with SAE J2194. These tests examine the performance of ROPS to withstand a sequence of loadings and to see if the clearance zone around the operator station remains intact in the event of an overturn. In order to shorten the time and reduce the cost of new product development, non-linear finite element (FE) analysis is practiced routinely in ROPS design and development. By correlating the simulation with the results obtained from testing a prototype validates the CAE model and its assumptions. The FE analysis follows SAE procedure J2194 for testing the performance of ROPS. The Abaqus version 6.12 finite element software is used in the analysis, which includes the geometric, contact and material nonlinear options.
Technical Paper

Deriving the Compressed Accelerated Test Cycle from Measured Road Load Data

2012-04-16
2012-01-0063
Validation of vehicle structure is at the core of reduction of product development time. Robust and accelerated validation becomes an important task. In service the vehicle is subjected to variable loads. These act upon the components that originate from road roughness, manoeuvres and powertrain loads. Majority of the body in white and chassis structural failures are caused due to vertical loading. Measured road load data in test track have variable amplitude histories. These histories often contain a large percentage of small amplitude cycles which are non damaging. This paper describes a systematic approach to derive the compressed load cycle from the measured road load data in order to produce representative and meaningful yet economical load cycle for fatigue simulation. In-house flow was developed to derive the compressed load time history.
Technical Paper

Design Improvement Driven by CAE for SUV Structural Crashworthiness in Offset Frontal Crash as per ECE R 94

2008-04-14
2008-01-0505
The scope of the project is to achieve SUV structural performance improvement to meet the offset frontal crash safety requirements as per ECE R 94 Regulation by design modifications in different Sub-systems of the vehicle structure suggested with the help of CAE crash simulations. The study can be classified in four main phases mentioned below. The first phase of the development is to conduct a crash test and CAE simulation for the baseline design. The second phase includes correlation activity among baseline test and CAE. The third phase is to achieve improvement by vehicle structure design modifications and new parts in chassis and BIW guided with CAE simulations and design iterations. Finally the forth phase deals with validation of new crashworthy vehicle design by last crash test.
Technical Paper

Design for Six Sigma (DFSS) of Hydroformed Engine Cradle Design for SUV Application

2011-01-19
2011-26-0109
In the new product design, meeting customer requirements, process alignment, timely execution and successful implementation plays a critical role. Six sigma methodology is a disciplined, standardized methodology supported by analytical tools to meet the quality and functional targets. An engine cradle or sub-frame is the principal load carrying member in a monocoque vehicle construction. It is extensively used to (i) provide structural support and retention of power train, suspension control arms, stabilizer bar, and steering rack mounting features (ii) to isolate the high frequency vibrations of engine and suspension from the remaining structures (iii) to absorb and transmit the impact forces during frontal crash. This paper attempts to explain (i) the various DFSS-DMADV techniques used during the engine cradle design and development (ii) correlation between the cradle stiffness simulation and test measurement values (iii) cradle NVH test results.
Technical Paper

Development of Indian Digital Simulation Model for Vehicle Ergonomic Evaluations

2016-04-05
2016-01-1431
Virtual assessment of an occupant postural ergonomics has become an essential part of vehicle development process. To design vehicle for different market is one of the primary reason for manufacturers using digital tools to address the specific needs of the target market including cultural background, road and traffic conditions. RAMSIS is a widely used software for creating digital human models (DHM) of different target population which allows manufacturers to assess design with unique customer requirements in product design. Defining these requirements with RAMSIS human module helped development team to accurately define occupant targets such as occupant space, visibility and reachability etc. Occupant behavior and usage scenario are factors which are unique to target market and they influence the occupant posture and usage pattern inside the vehicle. This paper defines the methodology towards the development of Indian Digital Simulation model for vehicle ergonomic evaluations.
Technical Paper

Development of a Free Motion Headform Impactor

2011-01-19
2011-26-0105
The development of interior fittings of passenger car to minimize the injuries to the head of the occupants requires mandatory compliance to the regulations in Europe and USA. In European regulation ECE R21 and similarly in FMVSS 201 the test on the instrument panel area suffices. The FMVSS 201u requirements in USA require also a free motion headform to be impacted on additional areas of the A-Pillar trim, sun visors, grab handles, and seat belt upper anchorage points of the B-Pillar too. Free Motion Headform Impactors (FMHI) are costly equipment. The FMVSS 201u [1] test is not conducted by any test agency in India as yet. Paper deals with the development of the head form impactor to fire the headform at angular positions in the vehicle and the test results have enabled the development of the vehicle interiors to enhance the safety of vehicles in crash situations.
Technical Paper

Effect of Flange Radius and Width on the Fatigue Life of Wheel Hub under Cornering Loads

2020-04-14
2020-01-1232
Automotive manufacturers are concerned about the safety of its customers. Safety critical components like wheel hub are designed considering the severe loads generated from various customer usage patterns. Accelerated tests, which are derived from Real World Usage Patterns (RWUP), are conducted at vehicle level to ensure the wheel hub meet the durability targets. Load and strain measurement are done to understand the critical lateral loading undergone by the wheel hub. Measured data is synthesized to drive the duty cycle. Finite Element (FE) Analysis of Wheel end is performed at module level considering measured loads to capture the exact load path in physical test. Simulation results are compared with the measured strain for validating the FE analysis procedure. FE analysis was repeated for different wheel hub designs, combinations of different flange radius (R) and flange width (t), to understand the effect of the two critical dimensions on wheel hub durability.
Technical Paper

Evaluation of Fretting Phenomenon in Gearbox and Allied Failures

2022-03-29
2022-01-0648
This paper takes a review of fretting phenomenon on splines of the engaging gears and corresponding splines on shaft of automotive transmission and how it leads to failure of other components in the gearbox. Fretting is a special wear process which occurs at the contact area of two mating metal surfaces when subject to minute relative oscillating motion under vibration. In automotive gearbox, which is subjected to torsional vibrations of the powertrain, the splines of engaging gears and corresponding shaft may experience fretting, especially when the subject gear pair is not engaged. The wear debris formed under fretting process when oxidizes becomes very hard and more abrasive than base metal. These oxidized wear particles when comes in mesh contact with nearby components like bearings, gears etc. may damage these parts during operation and eventually lead to failure.
Technical Paper

Evaluation of Vehicle Systems Structural Durability Using PSD Based Fatigue Life Approach

2012-04-16
2012-01-0953
In current competitive environment automobile industry is under heavy pressure to reduce time to market. First time right design is an important aspect to achieve the time and cost targets. CAE is a tool which helps designer to come up with first time right design. This also calls for high degree of confidence in CAE simulation results which can only be achieved by undertaking correlation exercises. In automobiles most of the structures are subjected to vibration from dynamic loads. All the dynamic road loads are random in nature and can be very easily expressed in terms of power spectral density functions. In the current scenario structural durability of the parts subjected to vibration is done partially through modal performance and partially though frequency response analysis. The only question that arises is what amplitude to use at what frequency and how to map all the accelerated tests dynamic load frequency spectrum to simulation domain.
Technical Paper

Experimental Investigation on the Effect of Tire Pressure on Ride Dynamics of a Passenger Car

2019-04-02
2019-01-0622
Ride is essentially the outcome of coupled dynamics of various involved sub-systems which make it too complex to deal analytically. Tires, amongst these, are known to be highly nonlinear compliant systems. Selection of tires specifications such as rated tyre pressure, etc. are generally decided through subjective assessment. While experts agree that tyre pressure affects the attributes such as ride to a noticeable degree, the quantification of the change often remains missing. In the current work, vibration levels of various sub-systems relevant to ride in an SUV are measured for three different tyre pressures at different speeds over the three randomly generated roads. For the purpose, artificial road profiles of classes A, B and C are synthesized from the spectrum of road classes defined in ISO 8608:2016 and reproduced on a four-poster test rig.
Technical Paper

Finite Element Analysis and Correlation with Physical Test of Tractor Hood Bang Endurance Test

2024-01-16
2024-26-0071
Tractors primarily serve agricultural functions but are also employed in various other applications such as loading, construction, and hauling. Tractors comprise several key assembly, including the engine, transmission, front hood assembly, and skid, among others. The hood is a critical assembly of the tractor, enclosing the engine and its associated parts. It is constructed from sheet metal with a 'Class A' surface finish for aesthetic purposes. The Hood is locked using latch mechanism mounted on the tractor chassis. The primary function of the hood is to facilitate the opening and closing of the hood assembly during servicing, and it often undergoes rough handling. Therefore, it becomes imperative to validate the durability of the hood assembly to ensure it can withstand the real-world conditions it encounters during these operations.
Technical Paper

Front Loading In-Vehicle Traffic Light Visibility Requirements for Driver as per Indian Road Standards

2017-07-10
2017-28-1932
Traffic awareness of the driver is one of the prime focus in terms of pedestrian and road safety. Driver experience plays a significant role and driving requires careful attention to changing environments both within and outside the vehicle. Any lapse in driver attention from the primary task of driving could potentially lead to an accident. It is observed that, lack of attention on the ongoing traffic and ignorant about the traffic information such as traffic lights, road signs, traffic rules and regulations are major cause for the vehicle crash. Traffic signals & signage are the most appropriate choice of traffic control for the intersection, it is important to ensure that driver can see the information far away from the intersection so that he/she can stop safely upon viewing the yellow and red display. Then, upon viewing the signal operations and conditions the motorist can stop his/her vehicle successfully before entering the intersection.
Technical Paper

Front Loading of Foot Swing Envelop during Egress to Vehicle Architecture

2017-07-10
2017-28-1960
In automotive industry, design of vehicle to end customer with proper ergonomics and balancing the design is always a challenge, for which an accurate prediction of postures are needed. Several studies have used Digital Human Models (DHM) to examine specific movements related to ingress and egress by translating complex tasks, like vehicle egress through DHMs. This requires an in-depth analysis of users to ensure such models reflect the range of abilities inherent to the population. Designers are increasingly using digital mock-ups of the built environment using DHMs as a means to reduce costs and speed-up the “time-to-market” of products. DHMs can help to improve the ergonomics of a product but must be representative of actual users.
Technical Paper

Generating a Real World Drive Cycle–A Statistical Approach

2018-04-03
2018-01-0325
Drive cycles have been an integral part of emission tests and virtual simulations for decades. A drive cycle is a representation of running behavior of a typical vehicle, involving the drive pattern, road characteristics and traffic characteristics. Drive cycles are typically used to assess vehicle performance parameters, perform system sizing and perform accelerated testing on a test bed or a virtual test environment, hence reducing the expenses on road tests. This study is an attempt to design a relatively robust process to generate a real world drive cycle. It is based on a Six Sigma design approach which utilizes data acquired from real world road trials. It explicitly describes the process of generating a drive cycle which closely represents the real world road drive scenario. The study also focuses on validation of the process by simulation and statistical analysis.
Technical Paper

Headliner Composition Optimization without Compromising the Safety and Performance

2024-01-16
2024-26-0190
Reducing material wherever there is a possibility in automobile industry is inevitable for weight and cost saving. This paper explains about the possibilities of optimizing the material composition of automotive Headliners (also called as Roof liners) without affecting the performance and safety criteria. In this paper, we are targeting at optimizing the individual constituents of a composite Headliner. A conventional Headliner comprises of many sandwich layers of which PU foam shares the major percentage of the composition contributing to 80% of the Headliner thickness. In this paper, we are discussing about the optimization done in Headliner sandwich constituents without affecting the core performance parameters of headliner such as curtain airbag deployment, ergonomic regulations, drop test etc. By incorporating this change, without significant changes in other layers, overall weight reduction of ~24% and overall cost reduction of ~24% is achieved.
Technical Paper

In-house Design and Development of Pedestrian Protection Test Rig

2013-01-09
2013-26-0021
Regulations on pedestrian safety have been introduced globally since the year 1990 and in India it will have to be met around the year 2016. Process of making vehicle compliant to this regulation requires rigorous design development and testing. Testing involves propelling head-forms (Child and Adult) on bonnet at 35 km/h and 40 km/h and leg-forms (Upper and Lower) on bumper at 40 km/h according to the different National / International / NCAP regulatory requirements A pedestrian protection test rig has been indigenously designed and developed in-house to perform pedestrian protection impact testing in-house. The paper describes the salient features of the pedestrian protection test rig, its functioning, operation and process of acquiring the data for determination of the values required by crash safety regulations.
Technical Paper

Investigation of Synchronizer Ring Failure in a Commercial Vehicle Transmission

2024-01-16
2024-26-0383
The commercial vehicles market is dominated by manual transmission, due to lower ownership cost. Generally, commercial vehicles are used in large numbers by the fleet owners. The transmission endurance life is very important to a vehicle owner. On the other hand, driver fatigue can be reduced with a smooth gear change process. The gear change process in a manual transmission is carried out with the help of the synchronizer pack. The crucial function of a synchronizer pack in an automotive transmission is to match the speed of the target gear for smooth gear shifting. In a transmission, the loose and the weakest part is the synchronizer ring. The failure of the synchronizer affects smooth gear shifting and it also affects the endurance life of the transmission. The synchronizer ring can fail due to poor structural strength, synchronizer liner wear, synchronizer liner burning, etc.
X