Refine Your Search

Topic

Author

Search Results

Technical Paper

A Component Level Test Methodology to Validate Hydraulic Clutch Slave Cylinder

2021-04-06
2021-01-0709
In this current fast-paced world, releasing a defect free product on time is of utmost importance in the automotive domain. The automobile powertrain is designed with a fine balance of weight and power. Clutch, an intermediate part between engine & transmission in manual transmission vehicle plays crucial role for vehicle smooth drive & functionality. Hydraulic clutch slave cylinder (CSC) which is a part of clutch release system was observed with one failure mode in one of the vehicles during internal road validation. It facilitates to actuate the clutch diaphragm in order to disengage the clutch when clutch pedal is pressed and to re-engage the clutch back when the clutch pedal is released. CSC failure directly disconnects the response of leg to clutch and thus driver may lose vehicle control and can possibly cause a severe vehicle crash.
Technical Paper

A Comprehensive Study on the Design and Development Methodology of Automotive Steel Wheel Rims Undergoing Highly Transient Cornering Events

2021-04-06
2021-01-0827
Wheel rim is one of the most critical safety parts in a vehicle. Strength in cornering loading is one of the most important durability test requirements for automotive steel wheel rim apart from other loading conditions like vertical and impact loads. Based on the category of vehicle and customer usage pattern, the accelerated cornering test is derived for testing steel wheel rims. The simulation and certification of steel wheel rim for the required dynamic durability testing requirement involves many steps ranging from acceptance criteria derivation to reliably addressing known potential failure zones in steel wheel rims. Nave radius and crown are sensitive to cornering loads, given the pitch circle diameter at the concept stage, the known effects of these key parameters are determined from DOE and used as reliable indicators to arrive at the shape and section of the steel wheel rim.
Technical Paper

Aerodynamic Drag Simulation and Validation of a Crossover

2010-04-12
2010-01-0757
Aerodynamic simulation using commercial CFD (Computational Fluid Dynamics) codes is now an integral part of the vehicle design process. Aerodynamic prediction and vehicle development program runs in parallel. This requires a good agreement between experimental measurements and CFD prediction of aerodynamic behavior of a vehicle. The comparison between experimental and simulation results show differences, as it may not be possible to replicate effect of all the wind tunnel parameters in the simulation. This paper presents the details of aerodynamic simulation process of a Crossover and its validation with the experimental results available from the wind tunnel tests. The results are compared for different configurations such as- closing the grille openings, removing the rearview mirror, adding ski-rack and using different tyres. This study also includes the effect of different wind speeds and yaw angles on the coefficient of drag.
Technical Paper

BIW Multidisciplinary Design Optimization (MDO) with Equivalent Static Load Method - Quick MDO Methodology

2021-04-06
2021-01-0287
Multidisciplinary Design Optimization (MDO) of an automobile body structure is a challenging task as it involves multiple, often conflicting requirements of safety, durability & NVH. Conventionally MDO process requires running large number of design of experiments (DOE) to explore the full design space and to build response surface for optimization. As the safety simulations are highly nonlinear in nature, they typically require significant amount of computational time and resources. Hence the conventional MDO approach is too expensive if too many design variables are simultaneously considered. In this paper, an alternative approach using Equivalent Static Load (ESL) method has been suggested for MDO which is quicker & accurate. The basic idea of the Equivalent Static Load-Method (ESL) is to divide the original nonlinear dynamic optimization problem into an iterative linear optimization and nonlinear analysis process.
Technical Paper

Countermeasures for Low Frequency Boom Noise Reduction in Electric Vehicle

2024-01-16
2024-26-0214
Electric vehicles (EV) are much quieter than IC engine powered vehicles due to less mechanical components and absence of combustion. The lower cabin noise in electric vehicles make customers sensitive to even small noise disturbances in vehicle. Road boom noise is one of such major concerns to which the customers are sensitive in electric vehicles. The test vehicle is a front wheel driven compact SUV powered by electric motor. On normal plain road, noise levels are acceptable but when the vehicle has been driven on coarse road, the boom noise is perceived, and the levels are objectionable. Multi reference Transfer Path Analysis (MTPA) is conducted to identify the path through which maximum forces are entering the body. Based on MTPA, modifications are proposed on the suspension bushes and the noise levels were assessed.
Technical Paper

Design Improvement of Differential Casing through CAE Strain Correlation

2014-04-01
2014-01-0756
A differential casing is one of the important elements in the vehicle power train, whose objective is to house differential gears and take different loads coming from these gears. The function of a differential is to drive a pair of wheels while allowing them to rotate at different speeds. While taking a turn, the outer wheel needs to travel more compared to the inner wheel. This is possible due to the differential which rotates them at different speeds. This Paper highlights a simplified methodology to capture the differential casing failure and to resolve the same. The methodology adopted was then correlated with the test measurements to increase the confidence. During physical tests, strains are measured at different orientations of the differential casing and correlated with simulation results.
Technical Paper

Design for Six Sigma (DFSS) of Hydroformed Engine Cradle Design for SUV Application

2011-01-19
2011-26-0109
In the new product design, meeting customer requirements, process alignment, timely execution and successful implementation plays a critical role. Six sigma methodology is a disciplined, standardized methodology supported by analytical tools to meet the quality and functional targets. An engine cradle or sub-frame is the principal load carrying member in a monocoque vehicle construction. It is extensively used to (i) provide structural support and retention of power train, suspension control arms, stabilizer bar, and steering rack mounting features (ii) to isolate the high frequency vibrations of engine and suspension from the remaining structures (iii) to absorb and transmit the impact forces during frontal crash. This paper attempts to explain (i) the various DFSS-DMADV techniques used during the engine cradle design and development (ii) correlation between the cradle stiffness simulation and test measurement values (iii) cradle NVH test results.
Technical Paper

Detent Profile Optimization to Improve Shift Quality of Manual Transmissions

2015-04-14
2015-01-1135
The customer of today is sensitive towards shift quality. The demand is for a crisp and precise gear shift with low shift effort. The impulses from synchronizers make shifts feel notchy. After synchronization the blocker ring releases the sleeve. The sleeve then hits the teeth of the clutch body ring. The second impulse causes a phenomenon called double bump. This can be felt at the hand and makes a shift feel notchy or sluggish. An ideal way to overcome this is to optimize the detent profile. This paper explains in detail the various factors that contribute to the perceived shift feel. Various methods to optimize the forces on the knob by changing the detent profile are discussed. Gear Shift Quality Assessment (referred as GSQA henceforth) is a tool to acquire the required shift feel data. Using this tool shift efforts and kinematics of a 5 speed manual transmission are plotted for illustration. The calculations required to optimize the detent profile are explained in detail.
Technical Paper

Development of Indian Digital Simulation Model for Vehicle Ergonomic Evaluations

2016-04-05
2016-01-1431
Virtual assessment of an occupant postural ergonomics has become an essential part of vehicle development process. To design vehicle for different market is one of the primary reason for manufacturers using digital tools to address the specific needs of the target market including cultural background, road and traffic conditions. RAMSIS is a widely used software for creating digital human models (DHM) of different target population which allows manufacturers to assess design with unique customer requirements in product design. Defining these requirements with RAMSIS human module helped development team to accurately define occupant targets such as occupant space, visibility and reachability etc. Occupant behavior and usage scenario are factors which are unique to target market and they influence the occupant posture and usage pattern inside the vehicle. This paper defines the methodology towards the development of Indian Digital Simulation model for vehicle ergonomic evaluations.
Technical Paper

Development of a Free Motion Headform Impactor

2011-01-19
2011-26-0105
The development of interior fittings of passenger car to minimize the injuries to the head of the occupants requires mandatory compliance to the regulations in Europe and USA. In European regulation ECE R21 and similarly in FMVSS 201 the test on the instrument panel area suffices. The FMVSS 201u requirements in USA require also a free motion headform to be impacted on additional areas of the A-Pillar trim, sun visors, grab handles, and seat belt upper anchorage points of the B-Pillar too. Free Motion Headform Impactors (FMHI) are costly equipment. The FMVSS 201u [1] test is not conducted by any test agency in India as yet. Paper deals with the development of the head form impactor to fire the headform at angular positions in the vehicle and the test results have enabled the development of the vehicle interiors to enhance the safety of vehicles in crash situations.
Technical Paper

Diagnosis and Elimination of Vehicle Shudder in a Sports Utility Vehicle

2013-01-09
2013-26-0090
Ground clearance plays an important role in Sports Utility Vehicles (SUV). Designers are good in designing their own systems but when it comes to integration of systems, the impact of one system on others and cascading effects become the major problems in full vehicle development. The test vehicle is a monocoque construction with power train in transverse (east-west) direction. Vehicle shudder is observed in lateral direction exciting the steering column, floor during the low gear power train run up in Wide Open Throttle (WOT) condition. The shudder is felt predominantly on the front half of the vehicle. Being a low frequency phenomenon with high energy it becomes critical and the phenomenon is easily perceivable by passenger. The paper discusses the measurement and analysis procedures to identify the root cause of shudder. Different modifications are tried out based on the analysis and an optimum solution is selected.
Technical Paper

Driveline Vibration Reduction in Light Weight all Wheel Drive Vehicle

2024-01-16
2024-26-0229
The test vehicle is All Wheel Drive (AWD) vehicle which is powered by four-cylinder engine. The power is transferred from the powertrain to the wheel through power transfer unit (PTU), propeller shaft, flexible rubber coupling and Integrated Rear Differential Assembly (IRDA) . Higher boom noise and vibration levels are observed when driving the vehicle in 4th gear WOT conditions. NVH levels are dominant between 1150 rpm to 2100 rpm and at 2200 rpm in 2nd order and 4th order respectively. Operational deflection shape (ODS) analysis is carried out on entire vehicle to identify the location where maximum deflection is observed at the problematic frequency. It is identified that higher torsional excitation from the powertrain is exciting the IRDA pitching mode and the propeller shaft bending mode which is the reason for higher 2nd order and 4th order NVH levels. The driveline forces are entering the body through the IRDA and rear cradle bushes.
Technical Paper

Effect of Flange Radius and Width on the Fatigue Life of Wheel Hub under Cornering Loads

2020-04-14
2020-01-1232
Automotive manufacturers are concerned about the safety of its customers. Safety critical components like wheel hub are designed considering the severe loads generated from various customer usage patterns. Accelerated tests, which are derived from Real World Usage Patterns (RWUP), are conducted at vehicle level to ensure the wheel hub meet the durability targets. Load and strain measurement are done to understand the critical lateral loading undergone by the wheel hub. Measured data is synthesized to drive the duty cycle. Finite Element (FE) Analysis of Wheel end is performed at module level considering measured loads to capture the exact load path in physical test. Simulation results are compared with the measured strain for validating the FE analysis procedure. FE analysis was repeated for different wheel hub designs, combinations of different flange radius (R) and flange width (t), to understand the effect of the two critical dimensions on wheel hub durability.
Technical Paper

Effect of Lift Axle Suspension Design on Heavy Commercial Vehicle Handling Performance

2024-01-16
2024-26-0049
The cost of fuels used for automobile are rising in India on account of high global crude oil prices. The fuel cost constitutes major portion of total cost of operation for Heavy commercial vehicles. Hence, the trend is to carry the goods transport through higher payload capacity rigid/straight trucks that offer lower transportation cost per unit of goods transported. This is driving the design of multi-axle heavy trucks that have lift axles. In addition, improved network of highways and road infrastructure is leading to increase in average operating speed of heavy commercial vehicles. It has made increased focus on occupant as well as road safety while designing the heavy trucks. Hence, the analysis of lift axle suspension from the point of view of vehicle handling and stability is essential. There are two basic kinds of lift axle designs used in heavy commercial vehicles: self-steered lift axle having single tire on each side and non-steered lift axle with dual tires on each side.
Technical Paper

Effect of Steel Wheel Disc Hat Profile and Vent Hole Shape on Fatigue Life in Cornering Test

2021-04-06
2021-01-0934
Automotive steel wheel is a critical component for human safety. For validating steel wheel various tests will be performed at component and vehicle level. Cornering test performed at vehicle level is one of the tests, where wheel will be validated for high cornering loads. Cornering test performed at vehicle level consists of three different events i.e., rotations of vehicle in track1, rotations of vehicle track 2 and rotations of vehicle in track3. As wheel will experience different loading in each of the events of cornering test, correlating the virtual Finite Element Analysis (FEA) with physical test is quite challenging. If in FEA we can predict the damage and life very near to the physical validation, we can create a safe wheel for high cornering loads without any test concerns. Vent hole shape and Hat depth are two important aspects in wheel disc design. Vent hole shape and size will influence the heat dissipation of braking.
Technical Paper

Evaluation and Comparative Study of ValveTrain Layouts with Different Rocker Ratio

2014-10-13
2014-01-2877
The Valve Train system is an integral part of any engine and the impact of its design is very crucial, particularly in high speed engines. Maintaining the required valve timing throught the engine operating speed and longer component life are the two important parameters which drive current valvetrain designs. An engine ValveTrain system designed for a valve lift of 7mm is to be modified for an increased valve lift of 8mm. A study was conducted to understand which design parameters are to be changed /modified to make this possible. For this study, the valvetrain of an air-cooled motorcycle engine is taken up. The valvetrain arrangement was an Over Head Camshaft (OHC) design with a Roller-Follower. A 1D commercially available numerical code was used to simulate the kinematics and dynamics of the system.
Technical Paper

Evaluation of Fretting Phenomenon in Gearbox and Allied Failures

2022-03-29
2022-01-0648
This paper takes a review of fretting phenomenon on splines of the engaging gears and corresponding splines on shaft of automotive transmission and how it leads to failure of other components in the gearbox. Fretting is a special wear process which occurs at the contact area of two mating metal surfaces when subject to minute relative oscillating motion under vibration. In automotive gearbox, which is subjected to torsional vibrations of the powertrain, the splines of engaging gears and corresponding shaft may experience fretting, especially when the subject gear pair is not engaged. The wear debris formed under fretting process when oxidizes becomes very hard and more abrasive than base metal. These oxidized wear particles when comes in mesh contact with nearby components like bearings, gears etc. may damage these parts during operation and eventually lead to failure.
Technical Paper

Evaluation of Vehicle Systems Structural Durability Using PSD Based Fatigue Life Approach

2012-04-16
2012-01-0953
In current competitive environment automobile industry is under heavy pressure to reduce time to market. First time right design is an important aspect to achieve the time and cost targets. CAE is a tool which helps designer to come up with first time right design. This also calls for high degree of confidence in CAE simulation results which can only be achieved by undertaking correlation exercises. In automobiles most of the structures are subjected to vibration from dynamic loads. All the dynamic road loads are random in nature and can be very easily expressed in terms of power spectral density functions. In the current scenario structural durability of the parts subjected to vibration is done partially through modal performance and partially though frequency response analysis. The only question that arises is what amplitude to use at what frequency and how to map all the accelerated tests dynamic load frequency spectrum to simulation domain.
Technical Paper

Experimental Analysis of Multi-Link Rigid Axle Suspension Camber Variation with Vehicle Load

2024-01-16
2024-26-0054
Increased popularity on SUV category in the market has led to high focus on performance attributes of SUVs. Considering high weight & CoG achieving target handling performance is always a challenge. Static Wheel Alignment parameters, especially Camber have shown significant contribution in Handling attributes of vehicle. This paper presents an experimental study on change in wheel camber under the influence of different vehicle loading conditions. In SUVs, generally wheel is subjected to large deflection from its high static loads which makes it quite difficult to maintain an ideal camber angle. Hence, it is important to analyze the camber angle variations under actual loading conditions. An in-house fixture is developed to emulate the actual vehicle loading conditions at rear wheel end. The multi-link rigid axle suspension with watt’s link assembly is mounted on the chassis-frame which is rigidly fixed to ground, and loads are achieved through hydraulic actuators at Wheels.
Technical Paper

Experimental Approach to Improve the Door Slam Noise Quality in Utility Vehicles

2013-01-09
2013-26-0095
The customer perception about the door slam noise and its feel would indicate the brand image of the car. In this paper the authors have made an effort to improve the door slam noise quality of the vehicle, which is currently in production. This paper describes the probable areas in the door to improve the slam noise quality by attempting modifications in the door design factors, such as door alignments, door panel stiffness, door trims, window glass rattle, latch striker alignment, door seals, air extractor. Since the door closing event is a transient phenomenon, it requires special tools such as wavelet transforms, Zwicker loudness to understand the slam events precisely. Subjective jury evaluations have been conducted to understand the effect of these modifications and rank the modifications based on their contributions to the door slam quality.
X