Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

A CFD Simulation Approach for Optimizing Front Air-Dam to Improve Aerodynamic Drag of a Vehicle

2020-09-25
2020-28-0361
The front air-dam diverts the airflow flowing through the underbody, thereby reducing aerodynamic drag. The height, shape and position of air-dam must be optimized to get improved drag. Extensive iterations are carried out to finalize the front air-dam size and position until the target is achieved. Researchers used to study the effect of air-dam height, then with fixed height will work to finalize position. Studies with interactive effect of front air-dam height and position are scanty. The existing process is time consuming as the front air-dam size and position is adjusted manually and simulation is being performed for each design and requires detailed analysis for all design iterations. The objective of this study is to couple CFD solver with design optimization software to reduce overall manual design iterations to choose the effective front air-dam geometry.
Technical Paper

A Parametric Approach of IP Duct Vane Articulation Study for Enhanced Cabin Cool Down Performance

2021-10-01
2021-28-0200
The cabin cool down performance is influenced by heat load, AC system components and Air handling components. The air handling components are AC duct, vane and vent. Design of AC duct vane plays a crucial role in the airflow directivity in cabin which enhances the cabin cool down performance. Simulations are carried out by rotating the vanes manually and requires post process for every iteration. It leads to more time consuming and more number of simulations to achieve the target value. Research articles focusing on automation and optimization of vane articulation studies are scanty. Thus, the objective of this work is to execute the vane articulation study with less manual intervention. A parametric approach is developed by integrating ANSA and ANSYS FLUENT tools. With Direct Fit Morphing and DoE study approach from ANSA delivers the surface mesh model for the different vane angle configurations.
Technical Paper

A Study of Compression Pad, Its Selection and Optimization Process for the Lithium-Ion Cell Module

2024-04-09
2024-01-2430
The need for eco-friendly vehicle powertrains has increased drastically in recent years. The most critical component of an electric vehicle is the battery pack/cell. The choice of the appropriate cell directly determines the size, performance, range, life, and cost of the vehicle. Lithium-ion batteries with high energy density and higher cycle life play a crucial role in the progress of the electric vehicle. However, the packaging of lithium-ion cells is expected to meet lots of assembly demands to increase their life and improve their functional safety. Due to their low mechanical stability, the lithium-ion cell modules must have external pressure on the cell surface for improved performance. The cells must be stacked in a compressed condition to exert the desired pressure on the cell surface using compression foam/pads. The compression pads can be either packaged between each cell or once in every set of cells based on the cell assembly requirements.
Technical Paper

BIW Resistance Spot Weld Parameter Standardization through Parameter Optimization across Various Sheet Metal Panel Combinations

2018-07-09
2018-28-0034
Body in White (BIW) is one of the critical aggregates of an automobile. Establishing the quality parameters during body manufacturing is essential to achieve robust BIW structure. Spot weld integrity and dimensional accuracy are the two major quality parameters of a BIW. Weld integrity plays an important role in achieving dimensional accuracy and structural stability. Various combinations of sheet metals are joined together to form a BIW structure. Spot weld parameter selection is one of the critical activity and needs to be programmed for the various combinations of sheet metals. Weld parameter for the various combinations are calculated with the resistance of the joining sheet metals thicknesses. The calculated parameters are validated with the coupon test (or) peel test and it requires several iterations to establish weld integrity of the different combinations and the selected parameters get registered in the weld controller.
Technical Paper

CAE Based Development of Hydro-Formed Crush Box for High Speed Impacts and its Correlation at Full Vehicle Level

2015-01-14
2015-26-0183
Crush box in an automotive passenger car has become an integral part of structural design performing various functions like optimizing energy absorption in high speed impacts, replaceable part during low speed impacts etc. Design of crush box for high speed impacts is very important as it is the first major energy absorbing component in the load path and its deformation significantly affects the overall vehicle crash behavior. The present paper explains development of a hydro-formed crush box in the front end of a sports utility vehicle. Hydro-formed components have residual plastic strains and non - uniform thickness variation throughout their length which is difficult to measure from a physical test coupon. It is critical to add hydro-forming effects onto crash FE models as it significantly affects the deformation under high speed impact. But detailed forming simulations need mature design and material data which is not available during early phases of product development.
Technical Paper

Customized ROPS Application for Configurable Design at Concept Level

2020-09-25
2020-28-0474
Tractor roll over is the most common farm-related cause of fatalities nowadays. ROPS (Roll-Overprotective Structures) are needed to prevent serious injury and death. It creates a protective zone around the operator when a rollover occurs. In India the ROPS is getting mandatory across all HP ranges except narrow track. In the present study states the customized ROPS application for configurable design such as Automated safety zone for all homologation standards, ROPS A0-D excel calculator for selection of material at concept stage and bolt calculator for selection of size. For the above applications below aspects need to consider such as Tractor weight, Rear housing mounting, Operator seat index position (SIP), Seat reference points (SRP) and all ROPS homologation standards. This ROPS application is to reduce the timeline, manual error and ensure the reliability of the modular optimal design for various platforms and variants.
Technical Paper

Develop the Methodology to Predict the Engine Mount Loads from Road Load Data Using MSC ADAMS and FEMFAT Virtual Iteration

2020-04-14
2020-01-1401
Design of powertrain mounting bracket is always a challenge in achieving good NVH characteristics and durability with less weight. For this activity engine mount load is necessary to optimize the weight to meet durability and NVH targets. This paper introduces a new method to calculate engine mount loads from chassis accelerations. The method starts by measuring chassis acceleration near engine mount location, then reproducing the same chassis acceleration in Multi Axis Shaker Table (MAST), and finally extracting the load in engine mount using testing (using load cell). The MAST test actuator displacement input is imported into ADAMS and engine mount loads are extracted. The extracted loads are correlated with physical test results. The correlation includes load time history and peak-to-peak load range. It is recommended to implement this method in early vehicle design phases. Implementing engine mount bracket weight optimization is desirable in early design stages.
Technical Paper

Emission and Noise Optimization of CRDe Engine with Pilot Injection Strategies

2019-10-11
2019-28-0019
The combustion strategies play a key role in emission improvisation and noise reduction on diesel engines equipped for higher emission norus. This paper clearly discussed on the selection of various operating points for optimization and employing of proper calibration strategies like pilot strategy, Main injection timing, EGR type and rail pressure variation for best emission and noise output. Various optimization techniques have been implemented in our study. Since the pilot injection quantity as well as timing are varied in our paper, careful matrix formulation is required to determine the best optimum point. Around 340 points were obtained on varying pilot quantity and pilot separation sweep chosen at single engine speed and load for both the pilots. Out of the above points, 5 sensitive points were selected ensuring the sensitivity of the emissions and noise.
Technical Paper

Innovative Approach of Reducing Vibration Stress in High Pressure Fuel Injection Pipe and Fuel Injector Using Vibration Dampers in Two Cylinder Diesel Engine

2021-04-06
2021-01-0686
Design and development of high-pressure pipe involves number of design validation plans for robust design in diesel engine. The fundamental behavior of two-cylinder diesel engine with parallel stroke involves high vibration which generates stress on components mounted on crankcase resulting into earlier fatigue failure. In this paper, the innovative approach of using optimized design of vibration damper for resolving high vibration stress concerns in fuel system is discussed. The vibration dampers were designed meeting both performance and durability aspects in two-cylinder diesel engine applicable for both passenger and commercial vehicle. This paper highlights the design approach involving experimental stress measurements and design optimization based on part development feasibility.
Technical Paper

Methodology to Determine Optimum Suspension Hard Points at an Early Design Stage for Achieving Steering Returnability in Any Vehicle

2019-01-09
2019-26-0074
Steering returnability while driving is one of the most important parameter which affects the drive pleasure and handling of a vehicle. Steering returnability refers to the automatic returning response of the steering wheel after taking a full turn while vehicle is being steered during driving. Evaluating steering response characteristics of any vehicle in a virtual environment at early stage of a product development saves significant development time and cost. Through this paper an attempt has been made to develop a methodology for selection of suspension hard points which influences steering returnability characteristics of a vehicle at an early product design stage. Conventionally, suspension kinematic parameters such as Caster angle, Steering axis inclination (SAI), etc. are iterated during vehicle design stage to achieve desired Steering returnability.
Technical Paper

Multi-Objective Optimization to Improve SUV Ride Performances Using MSC.ADAMS and Mode Frontier

2018-04-03
2018-01-0575
Ride is an important attribute which must be accounted in the passenger segment vehicles. Excessive H point acceleration, Steering wheel acceleration, Pitch acceleration can reduce the comfort of the driver and the passengers during high frequency and low frequency rough road events. Excessive Understeer gradient, roll gradient, roll acceleration and Sprung mass lift could affect the Vehicle driver interaction during Steady state cornering, Braking and Step steer events. The concept architecture of the vehicle plays an important role in how comfort the vehicle will be. This paper discusses how to improve SUV ride performances by keeping handling performance attributes same or better than base vehicle. Multi Objective Optimization was carried out by keeping spring, bushing and damper characteristic as the design variables to avoid new system or component development time and cost.
Technical Paper

Optimization of Body-in-White Weld Parameters for DP590 and EDD Material Combination

2021-10-01
2021-28-0215
Body in White (BIW) of an automobile serves as the shell, on which all the components that make up a vehicle, are mounted. The BIW is an assembly of press formed sheet metal components. The sheet metal composition of each component varies based on the form and functionality requirement of that component. The resulting assembly has multiple weld joineries with dissimilar compositions. The weld integrity of the joineries is crucial in maintaining the geometrical and structural integrity of the BIW. The primary welding method used in BIW assembly is Resistance Spot Welding (RSW). The quality of the weld is an outcome of a combination of multiple weld parameters. These parameters are majorly estimated based on the joinery thicknesses and material combinations. Multiple welding and testing iterations are done to fine tune the parameters for an optimum weld joinery. This is a very tedious process which increases the process time of a BIW assembly.
Technical Paper

Optimization of IP Duct Vane Articulation for Improved Cabin Airflow Directivity

2019-10-11
2019-28-0132
The air velocity achieved at driver and passenger aim point is one of the key parameters to evaluate the automotive air-conditioning system performance. The design of duct, vent and vanes has a major contribution in the cabin air flow directivity. However, visual appearance of vent and vane receives higher priority in design because of market demand than their performance. More iterations are carried out to finalize the HVAC duct assembly until the target velocity is achieved. The objective of this study is to develop an automated process for vane articulation study along with predicting the optimized velocity at driver and passengers. The automated simulation of vane articulation study is carried out using STAR-CCM+ and SHERPA optimization algorithm which is available in HEEDS tool. The minimum and maximum vane angle are defined as parameters and face level velocity is defined as response.
Technical Paper

Optimum design of a Tractor hydraulics system by innovative material development and Correlation with physical testing

2023-04-11
2023-01-0877
The tractor usage is growing in the world due to derivative of rural economy and farming process. It needed wide range of implements based on the applications of the customer. The tractor plays a major role in Agricultural and Construction applications. In a tractor, hydraulic system is act as a heart of the vehicle which controls the draft and position of the implement. Hydraulic system consists of Powertrain assembly, 3-point linkage and DC sensing assembly. The design of hydraulic powertrain assembly is challenging because the loads acting on the system varies based on the type of implement, type of crop, stage of farming and soil conditions etc., Hydraulic powertrain assembly is designed based on standards like IS 12207-2019 which regulates the test methods for the system based on the lift capacity of the tractor. In this paper, virtual simulation has been established to optimize the design and perform the test correlation.
Technical Paper

Performance Optimization of Single Cylinder Diesel Engine Oil Pump through PRV and Rotor System

2015-01-14
2015-26-0026
Oil pump is one of the important engine parasitic loads which takes up engine power through crankshaft to deliver oil flow rate according to engine demand to maintain required oil pressure. The proper functioning of oil pump along with optimum design parameters over various operating conditions is considered for required engine oil pressure. Pressure relief passage is also critical from design point of view as it maintains the required oil pressure in the engine. Optimal levels of oil pressure and flow are very important for satisfied performance and lubrication of various engine parts. Low oil pressure will lead to seizure of engine and high oil pressure leads to failure of oil filters, gasket sealing, etc. Optimization of pressure relief passage area along with other internal systems will also reduce the power consumed by the pump.
Technical Paper

Performance Optimization of Single Cylinder Diesel Engine Oil Pump through PRV and Rotor System

2015-01-14
2015-26-0028
Oil pump is one of the important engine parasitic loads which takes up engine power through crankshaft to deliver oil flow rate according to engine demand to maintain required oil pressure. The proper functioning of oil pump along with optimum design parameters over various operating conditions is considered for required engine oil pressure. Pressure relief passage is also critical from design point of view as it maintains the required oil pressure in the engine. Optimal levels of oil pressure and flow are very important for satisfied performance and lubrication of various engine parts. Low oil pressure will lead to seizure of engine and high oil pressure leads to failure of oil filters, gasket sealing, etc. Optimization of pressure relief passage area along with other internal systems will also reduce the power consumed by the pump.
X