Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Combustion Characteristics and Exhaust Emissions of a Direct Injection SI Engine with Pure Ethanol and Methanol in Comparison to Gasoline

2022-08-30
2022-01-1089
The automobile industry is under intense pressure to reduce carbon dioxide (CO2) emissions of vehicles. There is also increasing pressure to reduce the other tail-pipe emissions from vehicles to combat air pollution. Electric powertrains offer great potential for eliminating tailpipe CO2 and all other tailpipe emissions. However, current battery technology and recharging infrastructure still present limitations for some applications, where a continuous high-power demand is required. Furthermore, not all markets have the infrastructure to support a sizeable electric fleet and until the grid energy generation mix is of a sufficiently low carbon intensity, then significant vehicle life-cycle CO2 savings could not be realized by the Battery Electric Vehicles. This investigation examines the effects of combustion, efficiencies, and emissions of two alcohol fuels that could help to significantly reduce CO2 in both tailpipe and the whole life cycle.
Technical Paper

Technical Assessment of the Feasibility of the use of Bio-Gasoline as a Drop-In Gasoline Fossil Fuel Replacement

2022-08-30
2022-01-1087
Vehicle manufacturers are facing increasing legislative pressure to reduce vehicle emissions and achieve zero tailpipe CO2 emissions within the coming decade. The focus on techniques to reduce the tailpipe CO2 emissions, rather than vehicle lifecycle emissions, naturally dictates electrified solutions. However, this will not address the increased emissions resulting from vehicle manufacture, the emissions of the legacy fleet, or enable niche or classic applications, to be decarbonised for future use. The use of bio-derived fuels, and fully synthetic fuels, can provide a technical solution to these challenges, but it is beneficial if these can be used as a drop-in replacement to existing fossil derived fuels, as this would enable straight-forward backward compatibility with existing vehicles and avoid the need to re-engineer future engine designs or upgrade existing hardware.
X